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How to prepare for the final: Some advice.

1 . Work on homework problems without referring to the book. Then check against homework solu-
tions.

2 . Work on problems in “Study Guide” without the book at hand.

1 . Method of characteristics.
See midterm reviews. The purpose of listing it here is to generate a complete “Table of Contents”.

2. Method of separation of variables.
We illustrate this method using the following problem:

Example 1 . ( § 1 0. 1 3 2) Solve the Neumann problem

∇2u = 0 , 0 < x < 1 , 0 < y < 1 , 0 < z < 1 ( 1 )
ux ( 0 , y , z ) = 0 , ( 2 )
ux ( 1 , y , z ) = 0 , ( 3)
uy(x , 0 , z ) = 0 , ( 4)
uy(x , 1 , z ) = 0 , ( 5)
uz ( x , y , 0) = cos π x cos π y , ( 6)
uz ( x , y , 1 ) = 0 . ( 7)

2. 1 . The idea.



The whole “separation of variables” method is based on the following naïve wishful thinking:

The solution to a general boundary ( initial, initial-boundary) value problem
can be written as a sum of simple functions – products of single-variable functions
– which satisfy the same equation and similar boundary conditions.

• Thanks to the Sturm-Liouville theory, this approach indeed works.

• To carry out this approach, one need the ability to

i. Solve eigenvalue problems ( for finding out these simple functions) ;

ii. Expand a given function with respect to a set of eigenfunctions ( for getting the final infinite
sum formula) .

2. 2 . The procedure.
The basic idea of the method of separation of variables is to represent the solution into the following

form:

u(x , y , z ) =
∑

m, n

Umn(x , y , z ) ( 8)

where each Umn is of the simple form

Umn( x , y , z ) = X ( x) Y( y) Z ( z ) ( 9)

and is therefore relatively easy to find.
The basic assumption ( guaranteed through the Sturm-Liouville theory) is that each Umn is some-

what “independent” of others. In particular, each Umn satisfies the same equation as their ( alleged) sum u .
Under this assumption, we can try to determine each Umn through the following steps.

1 . Separating the variables .
Recall that Umn should satisfy the equation. This leads to

X ′ ′YZ + XY ′ ′ Z + XYZ ′ ′ = 0 . ( 1 0)

The goal is to obtain equations for X, Y, Z individually. To do this, we need the help of the fol-
lowing property of functions:

If

f (x , y , z , � ) = g(x ′ , y ′ , z ′ , � ) ( 1 1 )

and if the variables x , y , z , � and all different from any of x ′ , y ′ , z ′ , � , then both f , g
are constants.

To take advantage of this property we need to make the variables involved in the LHS different
from those variables involved in the RHS. A typical technique is dividing the equation by Umn .
This leads to

X ′′

X
+
Y ′ ′

Y
+
Z ′′

Z
= 0 . ( 1 2 )

Now we are free to move any term to the RHS. For example we move Z to the RHS to obtain

X ′ ′

X
+
Y ′′

Y
= − Z

′′

Z
. ( 1 3)

As a consequence there is a constant λ such that

X ′′

X
+
Y ′ ′

Y
= − λ , Z ′′

Z
= λ . ( 1 4)

Now we can do the same to the X, Y equation:

X ′′

X
+ λ = − Y

′′

Y
. ( 1 5)



The LHS involves only x and the RHS only y . Therefore there is another constant µ such that

X ′′

X
+ λ = − µ, Y ′ ′

Y
= µ. ( 1 6)

Thus we know have obtained equations for each of X, Y, Z , ( very weakly) coupled together
through two ( to-be-determined) constants λ , µ .

2 . Impose boundary conditions .
To solve any of the equations for X, Y, Z we need boundary conditions. Recall that our pur-

pose is to obtain the solution u in the form

u =
∑

Umn(x , y , z ) . ( 1 7)

Thus the boundary conditions of u implies

ux ( 0 , y , z ) = 0
�

∑
Umn( 0 , y , z ) x = 0; ( 1 8)

ux ( 1 , y , z ) = 0
�

∑
Umn( 1 , y , z ) x = 0; ( 1 9)

uy(x , 0 , z ) = 0
�

∑
Umn(x , 0 , z ) y = 0; ( 20)

uy(x , 1 , z ) = 0
�

∑
Umn(x , 1 , z ) y = 0; ( 21 )

uz (x , y , 0) = cos π x cos π y �
∑

Umn(x , y , 0) z = cos π x cos π y ; ( 22 )

uz (x , y , 1 ) = 0
�

∑
Umn(x , y , 1 ) z = 0 . ( 23)

Remember that we would like to obtain boundary conditions for each Umn . Now for the 0
boundary conditions, it is clear that the first thing to try is to require the same boundary condi-
tions for Umn , which in turn leads to definite boundary conditions for X, Y, Z :

X ′( 0) Y( y) Z ( z ) = Umn( 0 , y , z ) x = 0
�

X ′( 0) = 0 ; ( 24)
Umn( 1 , y , z ) x = 0

�
X ′( 1 ) = 0 ; ( 25)

Umn(x , 0 , z ) y = 0
�

Y ′( 0) = 0 ; ( 26)
Umn(x , 1 , z ) y = 0

�
Y ′( 1 ) = 0 ; ( 27)

Umn(x , y , 1 ) z = 0
�

Z ′( 1 ) = 0 . ( 28)

However it is less clear what to do to the remaining one
∑

Umn( x , y , 0) z = cos π x cos π y ( 29)

as it is easy to see that requiring

Umn( x , y , 0) z = cos π x cos π y ( 30)

will surely not work.

3. Solving eigenvalue problems .
We have the following problems to solve:

X ′′ + (λ + µ) X = 0 , X ′( 0) = X ′( 1 ) = 0 ; ( 31 )

Y ′ ′ − µ Y = 0 , Y ′( 0) = Y ′( 1 ) = 0 ; ( 32 )

Z ′′ − λ Z = 0 , Z ′( 1 ) = 0 , Condition at z = 0 to be revealed. ( 33)

We compare: The problem for X involves two unknown constants; The problem fo Y involves one
unknown constant; The problem for Z involves one unknown constant and is at the same time
missing one boundary condition.

Solving Y .
It is clear that we should start by solving Y .

Y ′ ′ − µ Y = 0 , Y ′( 0) = Y ′( 1 ) = 0 ; ( 34)

This is an eigenvalue problem.



An eigenvalue prob lem is a differential equation, which involve a parameter λ ,
together with some homogeneous boundary conditions. Usually, for most
values of λ no solution ( except the trivial solution 0 ) exists. Those λ for
which there are non-zero solutions are called eigenvalues , and these non-zero
solutions are called the corresponding eigenfunctions .

To solve simple eigenvalue problems ( those allow us to write down formulas for general solu-
tions) , the following steps are involved.

i. Writing down the general solutions of the equation.
For our equation Y ′′ − µ Y = 0 , the general solution has a different formula for each of

the cases µ > 0 , = 0 , < 0 . We write

− µ > 0 :

Y( y) = A e µ
√

y + B− µ
√

y , ( 35)

− µ = 0 :

Y( y) = A + B y ( 36)

− µ < 0 :

Y( y) = A cos
(
− µ√

y
)

+ B sin
(
− µ√

y
)
. ( 37)

ii. Finding out those µ which allows the problem to have non-zero solutions, these µ ’ s are the
eigenvalues. S ince our formulas already satisfy the differential equation, all we need to do is
to plug the formulas of the general solution into the boundary conditions and find out those
µ for which A, B are not both forced to 0 .

− µ > 0 . Boundary conditions become

µ
√

A − µ
√

B = 0 , µ
√

A e µ
√
− µ
√

B e− µ
√

= 0 ( 38)

which can be written as ( after cancelling µ
√

)
(

1 − 1

e µ
√
− e− µ

√

) (
A
B

)
=

(
0
0

)
. ( 39)

We know from basic linear algebra that A, B can be not both 0 if and only if

det

(
1 − 1

e µ
√
− e− µ

√

)
= 0 . ( 40)

As the determinant is

e µ
√
− e− µ

√ �
0 ( 41 )

for all µ > 0 , we see that A, B have to both be 0 . In other words, there is no µ > 0
which allows nonzero solutions, or equivalently there is no positive eigenvalue.

− µ = 0 . Boundary conditions become

B = 0 , B = 0 . ( 42 )

We see that Y = A the constant function is a solution. In other words, when µ = 0
there are nonzero solutions. Equivalently, 0 is an eigenvalue, whose corresponding
eigenfunctions are

Y = A ( 43)

for any constant A .

− µ < 0 . Boundary conditions become

− µ√
B = 0 , − − µ√

sin
(
− µ√ )

A + − µ√
cos

(
− µ√ )

B = 0 ( 44)



which leads to

B = 0 , sin
(
− µ√ )

A = 0 . ( 45)

We see that nonzero solution is only possible when sin
(
− µ√ )

= 0 or equivalently

µ = − n2 π2 . ( 46)

In other words, these values belong to eigenvalues, and for each eigenvalue µ = −
n2 π2 , the corresponding eigenfunctions are

Y( y) = A cos(n π y) . ( 47)

iii. Summarizing, we know that the eigenvalues are

0 , − n2 π2 , n = 1 , 2 , 3 , � ( 48)

with corresponding eigenfunctions

Y0 ( y) = A, Yn( y) = A cos(n π y) , n = 1 , 2 , 3 , � . ( 49)

Since − 02 π2 = 0 and cos( 0 π y) = 1 , we can simply write

µn = − n2 π2 , Yn( y) = A cos(n π y) , n = 0 , 1 , 2 , 3 , � ( 50)

From solving the eigenvalue problem, we have concluded that the only values of µ which would
allow nonzero Y are µn , n = 0 , 1 , 2 , 3 , � , and the corresponding solutions are constant multiples of
cos(n π y) . This constant multiple will be cancelled out in the final formula of the solution. There-
fore we will take

µn = − n2 π2 , Yn( y) = cos(n π y) , n = 0 , 1 , 2 , 3 , � ( 51 )

( It’ s perfectly OK to take other nonzero constants, for example Y0 = 3 , Y1 = 2 . 7 cos(π y) , Y2 =

5
√

cos( 2 π y) , etc. )

Solving X .
Now that we have obtained all possible values of µ , we move on to solve X or Z . Compare: The

problem for X involves one unknown constant λ ; The problem for Z involves one unkonwn con-
stant λ and is missing one boundary condition. It is clear that we should solve X now.

X ′′ + (λ + µ) X = 0 , X ′( 0) = X ′( 1 ) = 0 ; ( 52 )

The problem for X is similar to that of Y so we omit the details. For each n ( thus fix µn) the λ
values that allow nonzero solutions are those satisfying

λ + µn = m2 π2 m = 0 , 1 , 2 , 3 , � ( 53)

with corresponding solutions

X = A cos(m π x ) . ( 54)

Therefore the eigenvalues are

λmn =
(
m2 + n2

)
π2 m, n = 0 , 1 , 2 , � ( 55)

with corresponding eigenfunctions

Xmn = A cos(m π x ) . ( 56)

Summary. We have found out that the only values of λ , µ which allow non-zero solutions are

λmn =
(
m2 + n2

)
π2 , µn = − n2 π2 , m , n = 0 , 1 , 2 , 3 , � ( 57)

with corresponding nonzero solutions ( constant multiple of)

Xmn(x ) = cos(m π x ) , Yn( y) = cos(n π y) . ( 58)



4. Finishing the solution .

What to do.
Finally we need to solve Z . To obtain the boundary condition at 0 for Z , recall that

u(x , y , z ) =
∑

m, n

Umn( x , y , z ) =
∑

m, n

Xmn( x) Yn( y) Zmn( z ) . ( 59)

The ( so-far haven’ t been used) boundary condition

uz (x , y , 0) = cos π x cos π y ( 60)

leads to

cos π x cos π y =
∑

m, n

Zmn
′ ( 0) Xmn(x ) Yn( y) =

∑

m, n

Zmn
′ ( 0) cos(m π x) cos(n π y) . ( 61 )

Thus all we need to do is to expand cos π x cos π y into cos(m π x) cos(n π y) .

How to expand.
We know that we can expand any one-variable function into Fourier-cosine series over ( 0 , 1 )

( note that l = 1 here) :

f ( y) =
∑

n= 0

∞
fn cos(n π y) ( 62 )

with

fn = 2

∫

0

1

f ( y) cos(n π y) dy. ( 63)

The formula can be derived by assuming the correctness of the expansion and computing∫

0

1

f ( y) cos(n π y) dy =
∑

m= 0

∞
fm

∫

0

1

cos(m π y) cos(n π y) dy .

Now if instead of f ( y) we have f (x , y) , we can still treat x as a parameter and do the same
thing:

f (x , y) =
∑

n= 0

∞
fn(x ) cos(n π y) , fn( x) = 2

∫

0

1

f (x , y) cos(n π y) dy. ( 64)

We can then expand each fn( x) :

fn(x ) =
∑

m= 0

∞
fmn cos(m π x) , fmn = 2

∫

0

1

fn( x ) cos(m π x ) dx. ( 65)

Now substituting fn(x ) by its expansion, we have

f (x , y) =
∑

n= 0

∞
fn( x) cos(n π y)

=
∑

n= 0

∞ [ ∑

m= 0

∞
fmn cos(m π x)

]
cos(n π y)

=
∑

m, n

fmn cos(m π x) cos(n π y) . ( 66)

And

fmn = 2

∫

0

1

fn( x) cos(m π x ) dx = 4

∫

0

1 ∫

0

1

f (x , y) cos(m π x ) cos(n π y) dx dy. ( 67)

From this we conclude that the expansion of cos π x cos π y is
∑

m, n

fmn cos(m π x ) cos(n π y) ( 68)



with

fmn = 4

∫

0

1 ∫

0

1

cos(π x) cos(π y) cos(m π x ) cos(n π y) dx dy. ( 69)

As

2

∫

0

1

cos(π x ) cos(m π x) dx =

{
1 m = 1
0 m

�
1

( 70)

we see that

fmn =

{
1 m = n = 1
0 otherwise

. ( 71 )

Now recalling

cos π x cos π y =
∑

m, n

Zmn
′ ( 0) Xmn( x) Yn( y) =

∑

m, n

Zmn
′ ( 0) cos(m π x ) cos(n π y) ( 72 )

we see that

Zmn
′ ( 0) =

{
1 m = n = 1
0 otherwise

. ( 73)

Solving Z . Now we can solve Z . For each m, n we have

Zmn
′ ′ −

(
m2 + n2

)
π2 Zmn = 0 , Zmn

′ ( 1 ) = 0 , Zmn
′ ( 0) =

{
1 m = n = 1
0 otherwise

. ( 74)

First we write down the general solution.
There are two cases. When m = n = 0 , we have

Z0 0 = A + B z , ( 75)

otherwise

Zmn( z ) = A e m2 +n2
√

πz + B e− m2 +n2
√

πz . ( 76)

Imposing the boundary conditions we conclude that

Z0 0 = A, ( 77)

Zmn( z ) = 0 m
�

1 or n
�

1 . ( 78)

For Z1 1 , we have

Z1 1 ( z ) = A e 2
√

πz + B e− 2
√

πz . ( 79)

Boundary conditions lead to

Z1 1
′ ( 0) = 1

�
2
√

π [A − B ] = 1 ( 80)

Z1 1
′ ( 0) = 0

�
2
√

π
[
A e 2
√

π − B e− 2
√

π
]

= 0
�

A e 2
√

π − B e− 2
√

π = 0 . ( 81 )

Solving this system we obtain

A =
1

2
√

π

1

1 − e2 2
√

π
, B =

1

2
√

π

1

e− 2 2
√

π − 1
. ( 82 )

Thus

Z1 1 ( z ) =
1

2
√

π

e 2
√

π ( z − 1 ) + e− 2
√

π ( z − 1 )

e− 2
√

π − e 2
√

π
. ( 83)

Putting everything together, we have

u(x , y , z ) =
1

2
√

π

e 2
√

π ( z − 1 ) + e− 2
√

π ( z− 1 )

e− 2
√

π − e 2
√

π
cos(π x ) cos(π y) + C. ( 84)

Please take a look at the problem again to see why the arbitrary constant C appear.

3. Other issues related to separation of variables .



3. 1 . Coordinate system.
From the above example we see that for the variables to be successfully separated, the domain of the

problem has to be of the form a1 < x < a2 ; b1 < y < b2 ; c1 < z < c2 ; � since otherwise, the interval of the
equations for X, Y, Z , � would involve other variables.

Therefore, when the domain is not of the above form, to solve the problem using separation of vari-
ables, we need to first choose a new set of coordinates so that the domain becomes the above “rectangular”
form in these new variables. For example

− The cylindrical ( in Cartesian coordinates) domain x2 + y2 < a2 , 0 < z < l becomes the rectangular
domain

0 6 r < a , 0 6 θ < 2 π, 0 < z < l ( 85)

in cylindrical coordinates.

− The disc x2 + y2 < a2 becomes the rectangle

0 6 r < a , 0 6 θ < 2 π ( 86)

in polar coordinates.

− The sphere x2 + y2 + z2 < a2 becomes the rectangular domain

0 6 r < a , 0 6 θ < 2 π , 0 6 ϕ < π ( 87)

in the spherical coordinates.

3. 2 . The role of the Sturm-Liouville theory.
Except for simplest problems, the eigenvalue problems involved in separation of variables leads to

eigenfunctions which are not of the form cos
( n π

l
x
)
and sin

( n π
l
x
)
. Thus in general, the theory of Fourier

series cannot guarantee the validity of expansions of the solution like the following

u( x , y , z ) =
∑

m, n

Xmn( x) Yn( y) Zmn( z ) . ( 88)

Instead, the validity of such expansions should be checked using the Sturm-Liouville theory.

3. 3. Correct expansion.
Another important contribution of the Sturm-Liouville theory is making it possible to expand a func-

tion against a set of eigenfunctions which are not cos
( n π

l
x
)
and sin

( n π
l
x
)
.

For example, when solving

ux x + uyy + uz z = 0 ( 89)

over the cylindrical domain x2 + y2 < a2 , 0 < z < l , we first change variables to r , θ , z , and then the Θ
equation yields eigenvalues n2 and eigenfunctions cos(n θ ) , sin(n θ ) . The R equation then becomes

r2 R ′ ′ + r R ′ +
(
λ r2 − n2

)
R = 0 ( 90)

which leads to

λmn = αmn/a , Rmn = Jn
( αmn

a
r
)
. ( 91 )

The Sturm-Liouville theory tells us that
∫

0

a

Rmn( r) Rk n( r) r dr = 0 ( 92 )

which means if

f ( r) =
∑

m= 1

∞
fm Rmn( r) ( 93)

then

fm =

∫

0

a

f ( r) Rmn( r) r dr
∫

0

a

Rmn( r) 2 r dr
. ( 94)

This allows us to expand the boundary values into the eigenfunctions and finally solve the problems.



4. Green’ s function.

4. 1 . Green’ s function for ODEs.

Computing the Green’ s functions.
The Green’ s function G (x ; ξ) for an ODE

Ly = f ( 95)

with boundary conditions ( left and right)

(BLy) ( a) = A, (BRy) ( a ) = B, ( 96)

is obtained through the following steps.

1 . Multiply by appropriate h ( x) and write the LHS of the equation into the S-L form

h L y = ( py ′) ′ + q y ( 97)

2 . Writing down the general solution of the homogeneous equation

Ly = 0 . ( 98)

3. Imposing the left boundary condition, we get solutions which are constant multiples of one another.
Pick any one of them, call it yL . Imposing the right boundary condition and obtain yR .

4. Compute the constant

C = p( ξ)
[
yL ( ξ) yR

′ ( ξ) − yR ( ξ) yL
′ ( ξ)

]
( 99)

5 . The Green’ s function is given by

G( x ; ξ) =





yR ( ξ)

C
yL (x ) a < x < ξ

yL ( ξ)

C
yR (x ) ξ < x < b

. ( 1 00)

To remember this formula, just keep in mind that since yL satisfies the left boundary condition and
yR the right, the only way to combine them to obtain G is to let G be a multiple of yL on the left
half x < ξ and a multiple of yR on the right half x > ξ .

Remark 2. From the above discussion we clearly see that G (x ; ξ) depends on the operators L , BL , BR
but is independent of the RHSs f , A , B .

Remark 3. It is also clear that the Green’ s function corresponding to (L, BL , BR ) and ( f L , BL , BR) are
the same for any f .

Solving ODEs using Green’ s functions.
Suppose we have a problem

Ly = f (x ) , (BLy) ( a) = A, (BRy) ( b) = B. ( 1 01 )

Here L is a second order differential operator, BLy , BRy are combinations of y and y ′ . To solve this
problem using Green’ s functions we need to follow the following steps.

1 . Solve the problem

Ly = 0 , (BLy) ( a) = A, (BRy) ( b) = B. ( 1 02 )

Let the solution be denoted by w ( x) . Denote u = y − w , then the equations for u are

Lu = L ( y − w) = Ly − Lw = Ly = f , (BLu) ( a) = 0 , (BRy) ( b) = 0 . ( 1 03)

2 . Multiply by appropriate h ( x) and write the LHS of the equation into the form

h L y = ( py ′) ′ + q y = h f . ( 1 04)



3. Let G( x ; ξ) be the Green’ s function corresponding to (L , BL , BR) . Then

u(x ) =

∫

a

b

G( x ; ξ) h ( ξ) f ( ξ) . ( 1 05)

4. Finally we have

y = u + w. ( 1 06)

4. 2 . Green’ s function for PDEs.
We only discuss the problem

ux x + uyy = f (x , y) (x , y) ∈ D ( 1 07)

with certain boundary conditions.
The Green’ s function G (x , y ; ξ , η) satisfies the homogeneous counterparts of the equation as well as

the boundary conditions. For example,

ux x + uyy = f ( x , y) x > 0 , y > 0 , u = g1 along x = 0 ,
∂u

∂y
= − ∂u

∂n
= g2 along y = 0 ( 1 08)

Then the corresponding Green’ s function satisfies

Gξ ξ + Gηη = 0 , G = 0 along ξ = 0 ,
∂G

∂η
= − ∂G

∂n
= 0 along η = 0 . ( 1 09)

The procedure of finding the Green’ s function consists of the following steps.

1 . The fundamental solution:

Γ(x − ξ , y − η) =
1

2 π
ln
(

(x − ξ) 2 + ( y − η)
2

√ )
. ( 1 1 0)

2 . There are several ways to construct G from Γ .

i . The mathematical way.
Consider possible combinations of Γ of the form

G = Γ +
∑

ai Γ( bi (Xi − ξ) , bi (Yi − η) ) ( 1 1 1 )

and select appropriate ai , bi , Xi , Yi so that the conditions are satisfied.

ii. The “physical” way.
The physical meaning of Γ(x − ξ , y − η) ( as a function of ( ξ , η) ) is the potential gener-

ated by a unit charge at (x , y) . To obtain G , we need to put other charges at places outside
ξ > 0 , η > 0 to correctly cancel Γ along the boundary.

For example, if we require G = 0 along η = 0 , then it is clear that we should put a charge
of the opposite sign at the point (x , − y) . In other words, adding

− Γ( x − ξ , − y − η) ( 1 1 2 )

to Γ makes it 0 along η = 0 .

iii . The “smart” way.
Say we would like G = 0 along η = 0 . Setting η = 0 in Γ we see that its value is Γ(x − ξ ,

y) . The slightest change of Γ which can also give us this value along η = 0 is Γ( x − ξ , y + η) .
As Γ(x − ξ , y + η) = Γ( x − ξ , − y − η) , this function satisfies

Γ( x − ξ , − y − η) ξξ + Γ(x − ξ , − y − η ) ηη = 0 ( 1 1 3)

for ξ > 0 , η > 0 .

Solution formulas for Dirichlet (u = g on B ) and Neumann ( ∂u
∂n

= g on B ) problems:

u(x , y) =

∫

B

∂Γ

∂n
g ds +

∫∫

D

Γ ( x − ξ , y − η ) f ( ξ , η) dξ dη (Dirichlet) ( 1 1 4)

u( x , y) = −
∫

B

Γ g ds +

∫∫

D

Γ ( x − ξ , y − η ) f ( ξ , η) dξ dη ( Neumann) ( 1 1 5)



5. Transformation method.

5. 1 . The Fourier transform.
The Fourier transform of a function f ( x) is

F( f ) ( ξ) =
1

2 π
√

∫

− ∞

∞
e− i ξx f (x ) dx. ( 1 1 6)

The inverse transform is

F− 1 (u) ( x) =
1

2 π
√

∫

− ∞

∞
e ix ξ u( ξ) dξ. ( 1 1 7)

5. 2 . When should it be used.
For problems whose domain involves the full range of one or more variables. For example, if the

domain is { − ∞ < x < ∞ , y > 0} , Fourier transform (w. r. t . x) should be used; On the contrary, if the
domain is { a < x < b , y > 0} , Fourier series (w. r. t . x) should be used.

5. 3. Apply Fourier transform to solve PDEs.
The following steps should be following when solving a PDE

Lu = f , Initial conditions ( 1 1 8)

1 . Take the Fourier transform of the equation as well as the initial conditions.

2 . Solve the resulting equation to obtain the Fourier transform of the solution.

3. Take the inverse Fourier transform to obtain the formula for u .


