GREEN’S FUNCTION

In most of our lectures we only deal with initial and boundary value problems of homogeneous equation.
How about nonhomogeneous equations whose RHS are not 0?7 For example, consider the Laplace equation

uzz"‘“yy = f(xvy) $2—|—y2<1 (1)
u(z,y) = 0 2’ +y’=1 (2)

One approach is to follow the idea of separation of variables. More specifically, we rewrite the problem in
polar coordinates

uTT—I—%uT—i-%ueg = f(r,0) r<l (3)
u(l,0) = 0 (4)

Then, motivated by the result of the corresponding homogeneous problem, we write the solution as
u(r,0) = i [tn,1(r) cos(n B) + uy, o(r) sin(n 6)]. (5)
n=0
To find out u,,,1(r) and wu, 2(r), we expand
f(r,0)= i [fn,1(r) cos(n @)+ fn 2(r)sin(n 6)]. (6)
n=0

Substituting these into the equation and equating the terms involving the same trignometric functions, we
have

u,’{yl(r)—i—%ug’l(r)—i—%(—n2un71(r)) = fua(r) (7)
un,a(l) = 0 (8)
and
" 1, 1
W alr) + 2 al) 45 () = foa0) o
Un,2(1) = 0. (10)

We need to solve these equations to obtain an infinite sum formula of the solution.
Now there are two problems with this approach.

1. How do we solve the ODEs for u, 1 and uy, 27

2. (More importantly) How do we figure out the real-space dependence of u on the data f? For
example, if we know the shape of the function f(x, y), can we have any idea of the shape of the
function u(z, y)?

The answers the the above questions lie in the theory of Green’s functions. A Green’s function for a par-
ticular differential operator over a particular domain involving with n variables z1, ..., x,, is a function of
2 n variables x1, ..., Tn; &1, ..., &, denoted G(x1, ..., Tn; &1, ..., €), Which can produce the solution from the
data: the RHS and the boundary values.

For example, for the above example, the Green’s function corresponding to the differential operator
Ozz + Oyy over the domain 2% + y* < 1 is a function G(z, y; £, n) such that for any RHS f(z, y), the solu-
tion is given, in essence, by the following formula

u(z, y) = / G, y: €. m) F(€.m) d€ i, (11)
£2+n2<1

We see that as soon as we know the Green’s function of a problem, we have a universal formula fo its
solutions.

Remark 1. The precise relation between the Green’s function and the problem is the correspondence
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Now how do we figure out the Green’s function of a given problem

Lou=f? (12)
If we take the formula
u:/G(%.--,In; 1,05 &n) F(E1500ns &) d€a--dEy (13)
and put it into the equation, we have
/ (LmG(xlu weny T 517 ey 571)) f(glu (EE) gn) dgldgn: f(‘rlu eeey :En) (14)

To figure out how this helps in finding G, we need knowledge of the Dirac delta function.

1. The Dirac delta function.
The Dirac delta “function” is a non-traditional function which can only be defined by its action on con-
tinuous functions:

0(z1, 2y oy ) f(T1y .00y ) dy --- dayy = £(0,0,...,0). (15)
R'Vl

Remark 2. Interested readers can try to show that no continuous function can have the above property.

In particular, the 1D /2D delta functions are defined by

[ s@ t@ar=ror [ [5) fe. ) dady= 10,0, (16)

To make effective use of the delta function, we develop the following properties. In the following we only
show cases up to 2 dimension, higher dimension cases are similar.

1. Relation between 1D delta function and higher dimensional delta functions.
Since

[ J5@i s azay= [~ s@)| [~ ) e ay|aa= 0.0 (1)
Therefore
(2, ) =6(2) 5(1). (1s)

2. Translated delta functions (which is a special case of the following “change of variables” property).
It is easy to show

/6<w—s>f<x>dx=f<§>, //6<w—5,y—n>f(x,y>dxdy=f<s,n>. (19)

3. Behavior of the delta function under general change of variables.
We first consider the 1D case. Consider the change of variable a = a(x) or equivalently z =
z(a). Consider §(z — &). We try to find its representation in the new variable. In other words, we
try to compute

[oa=9 fe)da. (20)
Now as o= a(x), we have
/ 5z —€) fla)da = / 5z —€) f(a(x) o'(z) da
F(a(€)) a'(€)
- / o/(€)8(a — a(£)) (o) da (21)

which yields



Similarly, in 2D, under the change of variables

a=a(z,y), B=p(x,y) (23)
we have
[ [se=cv=m fa.mdaas = [ [sa=cu=) aa.9). B 1T dedy
= [J(& ] f(a(&, ), B ) (24)
which gives
5(‘T - 57 Yy — 77) = |J(§= 77)| 6(0( - 04(57 77)7 ﬂ - 6(57 77)) (25)
where
J(:my)zdet( gz ZZ ) (26)

is the Jacobian of the change of variables.

Example 3. Find the representation of the 2D delta function in polar coordinates.

Solution. We would like to obtain the formula for d(z — &, y — 1) in the polar coordinates (r,6).
The change of variables is given by

x=rcosb, y=rsiné. (27)
Differentiating, we obtain
Ty = ” I Ty 'I'" 9% T'2 ) oy T'2 (28)
and therefore
J(x,y)=det LA (29)
’ —y/r? x/r? r
Now let p,~ be such that
§=pcosy,  n=psiny, (30)
we finally have
1
0x=&y=—m=_0(r=p,6=7) (31)

We note that the above formula breaks down when p=0, because in that case vy can be any angle. There-
fore this case needs to be treated separately.

To find out the formula for §(z, y), we return to the definition. Denote the (unknown) formula for é(z,
y) in polar coordinates by A(r,6).

10.0) = [ [3ta.0) s dody
/O%/A(T,G)f(rﬁ)rdrdG (32)

Now notice that, for any function f,(r,8)= f(r,0+ ) we have (in Cartesian coordinates) f(0,0)= f,(0,
0). Therefore

/OQW/A(T,G) f(r,9+’y)rdrd9_/027r/A(r,&)f(r,@)rdrd@. (33)

This implies that A(r,#) is independent of #, from now on we denote it as A(r).
Now we have

f(o,())_/oh {/A(r)f(r,o)rdr}do. (34)

It is clear that we should take

A(r)= (35)

1
27 r



2. Green’s function for ODEs.
We consider the ODE system

(p(z) y'(2)) +q(@)y(z) = f(z) a<z<b (36)
aiy(a) +azy’'(a) = 0 (37)
by y(b) +bay'(b) = 0. (38)

Beware the difference of our equation and (8.11.1) on page 310 of the textbook!
Recall that we would like to have

e 16 ds=y(a). (39)
As f(€) is only given for a < & < b, the limits of the integral are naturally a and b. Therefore we need
b
| 6@ 10 d=yta). (40)
Now using the fact that ¢
(py)' +aqy=1r (41)
the above becomes
b
/ G(z: ) [(py) +qy] de=y() (42)

the ’ in the above integral denotes derivatives in &.
We use integration by parts to compute

b b b
/G(:E;é“)[(py’)/ﬁqu}d& = / G(:E;ﬁ)d(py’)Jr/ qGy
a a b a b
= G(:v;é)py’li—/ py’G’d€+/ qGy

a a
b

b
= G(l’;b)p(b)y’(b)—G(x;a)p(a)y’(a)—/ pG’dy+/ qGy

a a

= G(I;b)p(b)y’(b)—G(x;a)p(@)y’(@)—pG’y|Z+/b (G +4Gly

= G(:v;bb)p(b) y'(b) - G(a:0) p(a) y'(a) - p(b) G'(B) y(b) + pla) G (a) y(a)
+/ [(pG") +qG]ydg

= p(b)abG(w;b)y() G'(2:b) y(b)] = p(a) [G(x;a) y'(a) — G'(x;a) y(a)]
+/a [(pG") +qG]ydg (43)

Thus we see that the conditions on G should be
G(x;0) y'(b) = G'(z;0) y(b) = 0 (44)
G(x;a)y'(a) = G'(z;a) y(a) = 0 (45)
(r©) G0 ) +a(©) G &) = b —9). (46)

Instead of solving this system directly, we cite the following property of a Green’s function!

G(x;§)=G(& ) (48)

1. A non-rigorous “proof” is the following. For any Green’s function G(z; ) we have L¢G(x; §) = 6(xz — ). In other
words, if we denote u(£) =G(x;§), then Leu=45(x — ). Now since G is the Green’s function, we have

Clas &)= u() = / G(&;y) 6 — y)dy=C(& ). (47)



to replace the above system by the following:

(p(x) G(x:€),), +a(@) G(x: ) = d(x—&) (49)
G(b; ) y'(b) = Ga(b;€) y(b) = 0 (50)
G(a;€) y'(a) — Ga(a; €) y(a) = 0. (51)

Note that this implies G should satisfy the same boundary condition as .
Now we solve the system as follows. Since d(z — &) =0 for all x # £, we can break the above equation
into two equations:

[p(x) G(x;{)w]z—l—q(x) G(z;€) =0, a1 G(a; &) +a2Gy(a; &) =0, a<xr<f (52)

[p(2) G(x;6),] +a(@)G(x;6) =0,  biG(b; ) +baGu(b;6)=0,  E<z<bh. (53)

The plan now is the following. Each ODE system gives us a family of solutions with one degree of
freedom. Then we would choose the parameters appropriately to obtain the correct Green’s function.

Let y1(z) and yo2(z) be two linearly independent solutions of the homogeneous equation over a < z < b,
chosen such that

a1 yi(a) +azyi(a)=0; by ya(b) + ba yh(b) =0. (54)
Then we have
0={ Lt ¢ 9
Note that for any ¢1(€), c2(€), the corresponding G(z; ) satisfies
[p(x) G(x:6), ], + (@) G(x;6) =0 x#¢. (56)
Our last task is to figure out the appropriate c1(£) and c2(€) so that
[p(2) G(;€),], + a(x) G(z; ) =d(z - §). (57)

To do this we recall the definition of the § function

E+e
[ o= s as= g0 9

—€

for any function f which is smooth and satisfying f({ +¢)= f/(§ £¢)=0. Thus the requirement on G can
be revealed by

E+e
16 = [ {Ir@) 66, + 0w) 6} fw)da

E+e §+e
= [ @) 6@e),], @) et [ @) G ) fa)de (59)
Assuming that G is bounded, the second term vanishes as £ \,0. Therefore we have
§t+e
J©=lim [ [p(x)G(2:€),], /(x) da. (60)
Or equivalently e
P(E+) Ga(§+:8) —p(§—) Ga(§ —:€) =1 (61)
Recalling
o al@n@) r<£
we have

G(E+:8)=G(E—58) = ca(§) y2(8) = ca(§) v (&), (63)
P(E+)Ga(§4: ) —p(§ =) Ga(§ =5 €) =1 = p(&) ca(§) y2(§) — p(§) ca(§) wi(§) =1. (64)



Solving these two equations, we have

y2(8) o y1($)
p(&) 18 3 = w2 yiO 7 p(&) 1) wa(€) — v2(&) yi(E)]

To further simpify, we notice that from

ci(§) =

(py!) +aqyi=0 and (pyh) +qya=0
we conclude that
[p(y1y5—y291)] =0.
Therefore

p(&) [11(€) y(€) — y2() wi(§)] =C

is a constant.
Summarizing, we have

G(z; €)= c I<§.
x>¢€

Example 4. (§8.14 11 b) Find the Green’s function for the following problem
(1—2?)y"—2zy =0, y(0)=0, y'(1)=0.

Solution. We notice that
i

(1—-2?)y"—2zy’ =[(1-2?)y'].
Therefore

(1—x2)y':c = y’=1_$2.

Taking ¢=0 we obtain y = constant; For ¢+ 0, we have

oef L 1 (1t
y—2<1_$+1+x):>y— 21n<1_x)+constant.

Thus the general solution is

y:Clln<1+x>-‘ng
1—2
Requiring y(0) =0 and y’(1) =0 we obtain
_ 1+ _
yl(:v)—ln(l_x>, yo(x)=1.

As the equation is [ (1 —2?) y’]/:O we have p(z) = (1—2?).

Thus

C'=p(&) [11(€) (&) — v2(&) wi(§) | =—2.

Therefore

1 1+=zx
— =1
n(l—x) x <&

2
1 1+¢ '

G(z; €)=

Example 5. (§8.14 12 a) Determine the solution of the following boundary-value problem.

y'+y=1, y(0)=0, y(1)=0.

Solution. We solve the problem using Green’s function.



First we calculate Green’s function. The general solutions for the homogeneous problem

y"+y=0 (79)
is
y=Asinz + Bcosz. (80)
Setting y(0) =0 we have
y1(z) =sinz. (81)
Then setting y(1) =0 we have
ya(z) =cos1sinx —sinlcosz. (82)
As p(z) =1, we compute
C'=p(&) [11(&) (&) — y2(&) yi(£)] =sin 1. (83)

Thus the Green’s function is

y2(&) y1(z)  coslsin & —sinlcosé
G(z; &)= C B sin 1

y1(§)g2(z) = :Llf (coslsinz —sinlcosz) x>€

sinz  x<¢

(84)

The solution is then

1
y(x) = /0 Ga; €) de

_ /CE coslsinz —sinlcosz .
0

sin 1 ingdg

1 .
sin . .
+/w ] (coslsin & —sinlcos§)dé

coslsinx —sinlcosx
= - (1 —cosx)
sin 1

sinx
—— (

—cos?1 + cos 1 cosz — sin?1 +sin 1 sinx)
sin

1 . . . . 9
= — 1 coslsinx —sinlcosx —cos1lsinxcosx +sinlcos“z
sin
—sinac—i—sin:vcos1cos:v+sinlsin2:v}

1 . . . .
= — 1[coslslnac—smlcosx—smx—i—sml]
sin

sin
= 1—Cosx+m(cosl—1). (85)

3. Green’s function for PDEs.
We illustrate Green’s function theory for PDEs by considering the Poisson equation

Uga + Uyy = f(T,Y) (86)

with various boundary conditions. The idea is to first find a particular function I'(z, y; £, ) such that
Lot Tyy=0(x—&y—n) (87)
and then construct Green’s functions using I'. This function I' is called the fundamental solution of the

operator 0,4 + Oyy.

Remark 6. As the boundary conditions do not play a role in determining I', what we will carry out is
a “divide-and-conquer” type strategy, dealing with the equation and the boundary conditions separately.

Such a strategy is necessary. Because solving the Green’s function directly from the equation together
with the boundary conditions is as hard as solving the boundary value problem itself. As we will see soon,
one can cleverly take advantage of the symmetry of the domain to obtain G from T

3.1. Fundamental solutions.
We need to find out a function I'(x, y; £, ) which satisfies

me+1—‘yy:5(x_§7y_77)' (88)



Noticing the translation invariance of the differential operator, we can assume I' depending only on x — £
and y — 7, which reduces the problem to finding I'(x, y) such that

Changing variables to polar coordinates, we have
1 4(r
Lot 20,4 L= 1 200 (90)
27 r

Using the fact that both the operator 0, + Byy and the RHS d(z, y) are independent of 6 (invariant
under rotations, to be more precise), we assume I' is independent of #. Thus the equation becomes

1 8(r) 1

" l / 1 ’
r +r1—‘ 5 = rI'""+1"= 27T6(7°). (91)
This gives
1 1
n' _ I

(rT) —27T5(T) = I T for r > 0. (92)

Integrating one more time we have
1

We choose C' =0 to obtain

Paéon) =5/l = 0"+ (=" ). (94)

3.2. The method of images.

Now we use the fundamental solution to construct Green’s functions for various boundary conditions.
We restrict ourselves to the Laplace operator. For a domain D with boundary B, there are two typical
types of problems:

i. Dirichlet problem

Uest+uyy = f(2,y) in D;  u=g along B; (95)
ii. Neumann problem
Ugey +Uyy = f(x,y) in D; %:g along B. (96)

A Green’s function produces v from f and g.
Now intuitively we would like to construct the Green’s function from the fundamental solution T’
which satisfies

oot Tyy=0(x =& y—n) (97)
or equivalently

/ / (CuntTyy) F(E.m) dEdn = f(z,y) (98)

for any f. Let u(z, y) be the solution to the problem, we first try to see whether I' can serve as the
Green’s function. We compute

u) = [ [ @t To)ute mady
J[ @ ue magan
= [[ e+ utcmacan

// (Tew) e+ (Pyu), dgdn — // Peue+Tpu,dédn
= /—uds—// (T ug) e+ (Cug) d§dn+// (uge + umy) d&dn

/B%uds—/ P%der//D (x— &y —n) f(€,m)dEdn. (99)



The above becomes
or ou
ue)= [ Grods— [ Totast [[ Tamgy—n) siemagan (100)
B B n D

when we are solving a Dirichlet problem and

uep)= [ Gruds— [ gt [ [ via-ey-m femacan (101)

when we are solving a Neumann problem.
Therefore I' almost does the job except that in each formula there is one term (the red term) that is
not known. To fix this, we make the following crucial observation:

Let f(x, y; &, ) be such that R= I — T satisfies
Ryw+ Ryy=Reg+ Ryy =0 (102)
for all points (z, y) inside D and (&, n) inside D. Then the above formulas still hold with I
replaced by T.

In light of this observation, it is clear that our Green’s function for the Dirichlet problem is the partic-
ular T’ such that f‘(:z:, y; €, n) =0 for all (£, n) on the boundary, while our Green’s function for the Neu-

mann problem is the particular I' such that g—:(x, y; &, n) =0 for all (£, n) on the boundary. Now the

question becomes, how to find these particular I’s? Or equivalently, how to find the difference R? One
method is to cleverly take advantage of the symmetries of the domain.

Example 7. Consider the following problem on the upper half plane
Uge +Uyy = f(2,y) for y>0; uy(z,0)=0. (103)

Find its Green’s function.
Solution. We need one function R(z,y; &, n) such that

Ryr+Ryy=Ree+ R,y =0 (104)
whenever y >0 and 7 >0, and furthermore
0
(l"—i—R)y:%[F—i-R]:O (105)

whenever y > 0 and 7= 0. The idea is to look for R of the form a I'(b (z' — £), b (y' — 1)) and try to find
out appropriate a,b,z’, y’.

Now as 'y +T'yy =T¢e + Ty =0 whenever (z,y) # (£, n), we see that the first condition on R is satis-
fied as long as

(x,y)# (&, n) whenever y >0,n>0. (106)

It suffices to take y’ < 0.

Furthermore, to make (I' + R) =0, it suffices to make the function I' + R an even function in the y
variable.

Combining these two observations, we see that the appropriate parameters are

a=1, b=1, a'=z, y'=-—y. (107)

Thus the Greens function is

G(%y;ém):F(w—€7y—n)+F(:v—&—y—n):%ln(\/(x—S)QJr(y—n)2 \/(w—€)2+(y+n)2>' (108)



