WEEK 04 - 05: WAVE EQUATIONS

In this chapter, we will consider the (1D) wave equation
Upp — C2 Uy = 0. (1)
As we have seen, the general solution is

u(e,t)= f(x+ect) + gla— ct) (2)

with two artibrary functions f and g. In practice, the wave equation describes (among other phenomena)
the vibration of strings or membranes or propagation of sound waves. In these phenomena obviously there
is no arbitrary functions involved.

Now how do we “fix” the arbitrariness? Remember that for first order PDE (with two variables), the
solutions are surfaces in the space. One way to choose one from the infinitely many surfaces is the pre-
scribe one curve in the space and require the solution surface to pass through it. Remember that the coor-
dinates are (z, y, u), thus a curve in the space is represented by values of u assigned to a curve (z(t),
y(t)). Such a problem is called Cauchy problem.

When we deal with second order equations, it turns out that assigning u along a curve is not enough,
we also need to assign derivatives. To see why, we can rewrite a second order eqution into a system of
first order equations by assigning new variables

V=Uy, W=Uy. (3)

Then intuitively to “fix” one solution, we need to assign v, w along the curve too.
In this chapter, we will consider the Cauchy problem for (mostly 1D) wave equation

Upp — C2 Uy = 0. (4)

1. D’Alembert’s formula.

As a start, we study the simplest one, with u and u; assigned along the z-axis:!

Ut — Uy = 0, zeR, t>0 (5)
u(z,0) = f(x), zeR (6)
u(z,0) = g(x), zeR. (7

From past lectures we know that the general solution is
d(x+ct)+Y(x—ct). (8)

We would use the values of u,u; along the z-axis to fix the two arbitrary functions ¢ and . We have

o(x) +(z)=u(z,0) = f(z), (9)
cd'(z) —cy'(x) =w(x,0) = g(x). (10)
From this we have
P'(z)+'(x) = fl(2) (11)
@) - () = L (12
whose solutions are
, [, g9(z)
o) = 3|10+ 22] (13)
o) = 3| - 242] (14)

1. Think: why is assigning u; enough?



These give

Using
o(x) + ¥ (x) = f(x)
again, we can conclude C; + Co =0, that is

o) = 3 I+ [ aw+C

1 1 [
vie) = 5 f@) =52 [ ow)-c
As a consequence the solution formula is

x+ct
u(z,t)=¢(x+ct)+yY(x—ct)=

no| —

xr—ct

This is called the d’Alembert formula.

Example 1. (§5.12, 1 b)) Determine the solution.
Ut — P uz, =0, u(z,0)=sinz, wuyz,0)=2>

Solution. We use the d’Alembert formula:

x+ct
u(x,t):%[sin(a:—l—ct)—i—sin(:z:—ct)]—l—%/ ) y?dy.

Some calculation yields
u(z,t) =sin:vcosct+:62t+%02t3.
Example 2. (§5.12, 1 e)) Determine the solution.
Ut — A ug, =0, u(z,0)=log(1+2?%), wy(z,0)=2.

Solution. We use the d’Alembert formula:

u(z,t) :% {log(l +(z+ ct)2) —l—log(l +(z — ct)2)} + % /;_J::t 2dy.
Some calculation gives
u(z,t) :% [log(l + (x+ct)2) +10g(1 +(z — ct)2)} +2t.
(Note: It is not necessary to further “simplify” as the book did.

From the d’Alembert formula we see that

farety+ fe—ctl+5: [ oy

— the solution u at (z, t) only depends on the values of f at two points x & ¢t and the values of g
between these two points. In other words, what happens outside the interval (x — ct, z + ct) does
not affect the value u(z,t) at all. If we do not treat ¢ = 0 specially, we see that the value u(x, t) is
only affected by what happens inside the cone formed by the two rays from (z, t) passing (z — ct,

0) and (z + ct,0) respectively. This cone is called domain of dependence.

— on the other hand, if we represent u(z,t) using values along ¢t =to, we have

1 m+c(t7t0)
u(z,t)=u(z+c(t—1to),to) + u(x —c(t —to),t0) + —/ ue(y, to) dy.

2c

7C(t7t0)

(27)



We see that the values u(xo, to) and us(xo, to) are only involved in formulas for u(z, t) with « €
[0 — ¢ (t — o), xo + ¢ (t — to)]. Or equivalently, what happens at (zo, to) only affects what happens
in the cone formed by the two rays from (xg, t9) passing through (xo —c(t — tp), t) and (xo+c(t —

to),t). This cone is called the range of influence.

Finally we look at a general hyperbolic Cauchy problem.

Example 3. (§5.12, 4) Solve
Upe +2Ugy —3Uyy =0, u(z,0)=sinz, wuy(zr,0)=z.

Solution. First we need to reduce the equation to canonical form.
The characteristics equation is

(dy)* =2 (dz) (dy) — 3 (dz)* =0 = (dy —3dz) (dy +dz)=0
which gives
d(y —3z)=0, d(y+2z)=0
and leads to
E=y—3ux, n=y-+z.

Now we perform the change of variables. Calculate

Ce=—3, §y=1, Loa=Eey=Eyy=0,

Ne =1, Ny =1, Nea =Ty =1yy=0.

This gives

Ugr = YUee —6ugy + Uyy,

Ugy —3uge — 2Ugn+ Uy,
Uyy = Ugg+2Ugn+ Uny,

This transforms the equation to

0=(9uee = 6ugn+uny) +2(—3uge = 2ugy+uny) =3 (Uee + 2ugn + tny) = — 16 ugy.

Thus the general solution is
w(&,n)=¢(&) +v(n) = u(z,y)=o¢(y —3z) +¢(y+).
Now the Cauchy data leads to
é(—32z)+Y(x)=u(x,0)=sinz,
¢'(—3x)+ Y () =uy(z,0)=2x.
Taking derivative of the first equation we have
-3¢ (—3z)+v'(x)=coszx.

Thus we can solve

¢/(_3x):w:>¢/(w):—$/3—COS(—:E/3) d},(x):cos:v—i—?):v
4 4 ) -
Integrate, we obtain
a? 3 327 1.
¢(I)__ﬁ+151n(_33/3)+017 7/J(I)—T+Zsmx—|—02_

The Cauchy data
d(—32)+¢P(z)=u(z,0)=sinzx

(28)



then gives C7+ C5=0. Finally

—32)°  3(y+a)’® 1. 3 .
u(x7y):¢(y_3x)+¢(y+x):—(y 51 ) + (yg ) +Zsm(y+x)+zs1n(:v—y/3). (45)
This can be further simplified to
y? 1. 3 .
u(x7y):?—l—xy—l—zsm(y—i—:v)—i—zsm(x—y/3). (46)
2. Initial-boundary value problems.
2.1. Semi-infinite string with a fixed end.
We consider the case
Upr — CPUzy = 0, O<z<oo, t>0 (47)
u(z,0) = f(x), 0<z < o0, (48)
u(z,0) = g(x), 0< 2 < oo, (49)
u(0,t) = 0, 0<t<oo0. (50)

Remark 4. Obviously to obtain continuous solutions, we need to require the consistency condition
f(0)=g(0)=0 and f"(z)=0.

Again we try to fix the two arbitrary functions in the formula
oz +ct)+9Y(x—ct). (51)

Using the initial-boundary values we have

o(x)+Y(x) = flo), 0<z <00 (52)
¢'(x) —P/(x) = g(f), 0< <00 (53)
plct)+(—ct) = 0, 0<t<oo. (54)

From the first two equations we obtain

¢'(x) = %[f’(ng(f)], 0<z <00 (55)
P(x) = %[f’(w)—g(f)], 0<z <00 (56)

which gives us
o) =5 f@)+ 52 [ a+C v@ =g 1@ -5 [ e -c (57)

but only for x > 0.
To determine ¢ and v for x <0, we try to use the boundary value along the t-axis. We have

v =—o(-0) == f-0-5- [ aw-C.  a<o (58)

But what about ¢(x) for x < 07 It turns out that since we only need u(x, t) for £ > 0,¢ >0,  + ct is
always positive, as a consequence we already have all ¢(x + ct) we need. The formula would be

1 x+ct
[fz+ct)+ f(x—ct)]+=— g(y)dy z>ct
2c/mfct (59)

x+ct °
[f(a:—l—ct)—f(ct—a:)]—l—%/ g(y)dy 0<x<ct

ct—x
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Example 5. (§5.12, 7) Determine the solution of the initial-boundary value problem

Solution. We apply the formula.
When x > 2t, we have

When z < 2t, we have

Example 6. (§5.12, 10) Consider

(Note that there are several typos in the book). Show that one can solve it by extending f, g oddly.

u(z,t) =

u(z,t) =

Ut =
u(z,0) =

ue(z,0) =
u(0,t) =

N~ N~

4y,
$4,
0,

0,

O<z<oo, t>0
0<z <oo,
0<xr<oo,

1>

= 44+ 24222+ 16t%

N = N = N

[f(x+2t)—

f2t—x)]+

0.

[fle+20)+ flz—21)] +

[(x+2t)4 (a:—2t +

[(@+20)' - @t-2)'] +

First in this problem c=2, f(x)

NG

NG

=z g(z)=0.

/m+2t
x—2t
/m+2t

1 r+2t
1 /Z 9(y) dy

t—x

1 x+2t
— 0dy
4 /thm

(ot +82%t+ 2402432082+ 16¢)

— (2 =82t +242°t° - 322> + 16 17) ]

= 823

u(z,0) =
ug(x,0)
u(0,1)

Solution. We extend f and g:

and solve the initial value problem

t+32xt3.

— 2
= C Ugqg,

f(x),
9(x),
07

0<x<o0,
0<xr<oo,
0<x <00,

t>0.

the initial-boundary value problem

t>0,

f(z) x>0 [ g(2) >0
—f(—z) <0’ ()= —g(—z) z<0°
Uy = Cliga, —oo<zr<oo, t>0,
i(z,0) = f(x), — 00 < T <00
uy(x,0) = g(z), —o00<x <00

The d’Alembert formula gives

i) =3 [Fetet)+ fla—ch)]

N~ o~

[f(x+ct)+ flxz—ct)]

[f(z+ct) -

T

1

flet—a) +5-

2c

L
2c /,

From this we clearly have for 2 >0,t >0 (note that x 4 ¢t is always >0)

)
|

x+ct

ct
x+ct

x

g(y)dy z>ct

g(y)dy 0<z<ct

(75)



2.2. Semi-infinite string with a free end.
The problem is

Upr — CPUzy = 0, O<z<oo, t>0 (76)
u(z,0) = f(z), 0<z<oo, (77)
w(z,0) = g(z), 0<z<oo, (78)
uz(0,t) = 0, 0<t<oo0. (79)
Similar to the above case, we first write
u(z,t)=¢(x+ct)+P(x—ct) (80)
Now using the initial value, we obtain
o(z)+(@) = f(z), =20 (81)
@) - = L azo (52)
which gives
o) =3 1)+ g [ e+, v@=g i@ -5 [ aw-c (83)
For ¢(x) with x <0, we use
d'(ct)+Y'(—ct)=0 = Y'(x)=—¢'(—x) for x <O0. (84)
This leads to
V@) == ()= go9(—0) = v@) =5 f(—a)+g [ )+ <0 (85)

The constant C’ is determined by requiring (x) to be continuous, that is the two formulas should yield
the same value at z =0, therefore C'=— C.
x+ct
/ T>ct
x—ct (86)

Putting everything together we have
[fz+ct)+ f(z—ct)]
erct ct—x °
{ dy+/ g(y)dy] O0<z<ect
0

e

—

8
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S~—

|
[T T
l\D|H l\D|H

[fz4+ct)+ f(ct—x)]

Example 7. (§5.12, 8) Determine the solution of the initial-boundary value problem

Uy = Upy, O<x<oo, t>0 (87)
u(z,0) = 0, 0<r<oo (88)
u(z,0) = 2%, 0<z <00 (89)
uz(0,t) = 0. 0<t<oo (90)

Solution. Here c=3, f =0, g=23. Using the formula we have
when z > 3¢,
xr+3t

fe+30+1@=301+5 [ sy

—3t
x+3t
/ ydy
x—3t

[(@+30)' (@ -31)"]

u(z,t) =

| —

|~

[24$3t+216$t3]
t+9xtd. (91)

B9 e



when z < 31,

43t 3t—x
wat) = Sl ey [ swars [ g(y)dy]

1 x+3t 3t—x
= = / y3dy+/ y*dy
0 0
1

= —[(17—0—315)4—1-(315—:17)4}

22+ 108 2% % + 162 ]

It.

1
21
— _I4+gx2t2+
12 2

2.3. Equations with nonhomogeneous boundary conditions.
Consider

Upr — P Ugy = 0, O<x<oo, t>0
u(z,0) = f(z), 0<z<oo,
u(z,0) = g(z), 0<z<oo,
u(0,t) = p(t), 0<t<oo0.

Remark 8. The consistency conditions are
p(0)=f(0), p'(0)=g(0), p"(0)=c*f"(0).
The approach is similar to that in the homogeneous case, for <0 we obtain

@) =p( =)= o(~a).

c

As a consequence, the formula becomes

x+ct
%[f(x—l—ct)—i—f(a:—ct)]—l—%/ g(y)dy z>ct
u(xvt): 1 1 x;ﬁf:t 2 :
§[f(x+ct)—f(ct—x)]+%/ctiz g(y)dy—l—p(t—z) 0<z<ect

Our last case is

U — P Ugy = 0, O<x<oo, t>0
u(z,0) = f(z), 0<z<oo,
u(x,0) = g(z), 0<z<oo,

uz(0,t) = q(t), 0<t<oo0.

We obtain

and the solution for z < ct is given by

1

%[f(w+cf)+f(ct—w)]+%{/OIM 9(y) dy+/00t_m 9(y) dy} —c/ot_w/c q(y) dy.

3. Vibration of finite string with fixed ends.

(98)

(105)



A more complicated problem is when we have two boundaries.

Ut — P Ugy = 0, O<x<l, t>0 (106)
u(z,0) = f(x), 0<z<l, (107)
u(z,0) = g(x), 0<z<|, (108)
u(0,t) = 0, 0<t<oo (109)
u(l,t) = 0,  0<t<oo. (110)
Once more we start with the general solution
u(x,t) = ¢(x+ct)+P(x —ct) (111)
and try to exclude arbitrariness using the initial and boundary values.
This time, from the initial values we can only obtain
1 1 [ 1 1 [
@) =5 (@) +5- [ 9(y)dy+C, d@)=5f(@)—5- | g(y)dy-C, 0<z<l (112)
2 2c /o 2 2¢c Jy
But this only gives us the solution inside
{(z,t):x+ct,x—cte[0,]]}. (113)

What to do for points outside? We need to use the boundary conditions. Using them we obtain
PE)=—9o(-x),  or)=-9Q2l-=) (114)

which extends the definition of ¢ to [ —1{,[] and that of ¢ to [0,2[]. Now using these two relations again,
we obtain 1 over [— 2[,!] while ¢ over [0,3[]. Repeating this process, we finally got 1 defined over ( — oo,
[] while ¢ over [0,00). It is clear that this is sufficient for determine u(x,t) using

u(z,t)=¢(x+ct)+ Pz —ct) (115)
for all (x,t):0<2z<1,t>0.

Example 9. (§5.12, 15) Find the solution of the initial-boundary value problem

Upp = 4um, O<xz<l1, t>0 (116)
u(x,0) = 0<z <], (117)
u(z,0) = (1—:17) 0<z<1, (118)
u(0,t) = t>0, (119)

u(1,t) = t>0. (120)

Solution. In this problem ¢=2, f=0, g=xz (1 —z). Recall that the general solution is
uw(z,t)=¢(x+2t)+ Y(x —21). (121)

As we need u(z,t) for all 0 <z <1, t >0, we need values of ¢(x) for all x>0 and () for all z <1.
First using the initial values, we conclude

1 [* 1 1
o(x) = Z/ y(l—y)dy+C=ga’—52°+C (122)
_ 1o 1 5
Y(z) = gt 5® C. (123)
Both formulas hold only for 0 <x < 1.
Now using u(0,t) =0 we obtain
plct)+v(—ct) =0 = P(x)=— ¢(—2), (124)

using u(1,t) =0 we obtain
o(1+ct)+¢Y(1—ct)=0 = ¢(z)=—¢Y(2—2). (125)
Thus we will use ¢¥(z) =— ¢( —x) and ¢(z) =9 (2 — ) to determine values of ¢ and 9 outside 0 <z < 1.



Using ¢(z) = — ¢( — x) once, we obtain

L o 1 3
s Sy S ~1<z<0.
P(z) g% 3% C 1<z<0 (126)
Next using ¢(z) = — 9(2 — x) we have
(;5(90)2%(2—96)2—%(2—90)34—0 1<z <2, (127)
and
1 2 1 3 1 2 1 3
=_(2— — (2 — =—(x — ——(zx— <z <3
o(x) 8(2 x)+12(2 z)"+C 8(:10 2) 12(:10 2)°+C 2<r<3 (128)
Note that so far we have determined ¢» on — 1<z <1 and ¢ on 0 <z <3.
Now using 9 (z) = — ¢( — x) again, we can determine ¢ on —3 <oz < —1:
1 2, 1 3
w(x):—§(2+x) +E(2+x) -C -2<r<—1, (129)
(@) = — 224 a) b (—2—2P—C=— 1242 -2 2+a)—C (130)
-8 12 8 12 '

Comparing the values of 1 over —1 <z <1 and —3<x<—1, we observe that ¢ on —3 <z < —1 can be
obtained from 1 over —1 < x <1 by a translation.

Carrying on the process, we see that ¢ and 1 are in fact obtained from periodic extension of their
values over 0 <x <2 and — 1< x <1, respectively.

Remark 10. As we can see from the past few lectures, the closed solution formulas are less and less
helpful in understanding the equation/solution as the domain gets more complicated. In a few weeks, we
will study a different approach to these “more complicated” initial-boundary value problems.

4. Nonhomogeneous wave equations.
In this section we consider the initial value problem

U — A ugy = hiz,t), zeR, t>0 (131)
u(z,0) = f(z), zeR (132)
u(z,0) = g(x), zeR. (133)

Note that this time we do not have the formula for general solutions at hand. Nevertheless, we can try to
simplify the equation a bit using the d’Alembert formula. Let v be defined by the d’Alembert’s formula

1 1 xr+ct
v(:c,t)zqﬁ(x—l—d)—i—l/}(:t—ct)zi[f(:v—i—ct)—i—f(:v—ct)]—i-%/ g(y) dy. (134)
T —ct
We know that v solves
Vep — P Uge = 0, zeR, t>0 (135)
v(z,0) = f(x), zeR (136)
v(z,0) = g(z), z€R. (137)
Let w=w —v. Using the linearity of the equation, we easily see that w solves
Wi — P wey = h(z,t), reR, t>0 (138)
w(z,0) = 0, zeR (139)
w(z,0) = 0, rzeR. (140)

All we need to do is to solve w.

In the following we will forget the physical meaning that ¢ is time and x space, and treat them just as
the two coordinate variables for the plane. To find out w(zo, to), we integrate the equation over the
domain of dependence:

Q={(z,t): t>0, v€(xzo—c(to—1t),xz0+c(to—1))}. (141)



We have

//Q (wie — wm)dacdt://Q h(z,t) dz dt. (142)

Now we use Green’s formula

// Fm—i-Gyd:vdy:j{ Fdy—-Gdx (143)
Q a0
to obtain (with t «— y, wi+— G, — 2w, «— F)
// h(a:,t)dxdt:—?{ A w, dt +wyda. (144)
Q o0

Remark 11. One way to remember Green’s formula is the following. Consider the special case that 2 =

{(z,y): 0<z,y<1}. Then
1 1 1 1
/ / F,dx dy+/ / Gy,dy
0 0 0 0

// Fr,+Gydzdy
Q
1 1 1 1
= / F(l,y)dy—/ F(O,y)dy+/ G(l,x)dx—/ G(0,z)dx
0 0 0 0

/01 G(O,a:)d:z:+£0 G(1,z) dx]

j{ Fdy—Gdz. (145)
aQ

dx

= /01 F(1,y)oly+£0 F(0,y)dy —

The boundary 02 can be consists of three parts: I'; along the x-axis, I'y along x + ¢t = xg + ctp, ['s along
T —ct=x9— ctyg. We evaluate the integrals on them one by one.

e T';. Along it we have dy =0 and w;=0. Thus fl“l =0.

o TI's. We represent I's by {(z(t),t)} with z(t) +ct =120+ cto. Then we have dz(tt) =—c and

/F2 Aw,dt +wydr = /Ot0 wy(z(t),t) dt—f—/oto wy(z(t), t) da(t)
= /Oto Pwa(x(t), 1) dt+/0t0 wy(z(t),t) (—c)dt
/Oto —C[ (x(t)vt)dz—y)ﬂtwt(x(t),t)} dt

_ _C/O " L), 0 dr
— ¢ [w(x(to), to) — w(z(0),0)]

Il
S
g

= —cw(xo,ty). (146)
e I'3is similar to I's.
Putting the three parts together we obtain
// h(x,t)dxdt:—j{ A w, dt +wydz =2 cw(xo, to) (147)
Q aQ
which gives the formula
w(x,t):i// h(y,s)dyds. (148)
2¢c Q

Remark 12. An equivalent approach is to use Gauss’ theorem instead of Green’s formula.

// Ft—i—Gwdxdt:f Fn;+Gn,ds (149)
Q 0



where s is the arc length variable along the boundary, and n:, n, are the t-component and x-component

of the outer normal n. Taking F =w, and G = — c?w,, we have

// (wtt—c2wm)dxdt:7§ wyng — 2wy ng ds
Q a0

The boundary 02 consists of three parts. Along the two sides we have

:l: c

ng \ V1+c?

Ny !
V14 c2

As a consequence, we have

ﬁ—:l: 1 de ¢
ds Vit ds V14 c?

along them, which means
dw

1 c
w Wy =——
V142 t:F\/l—i—c2 ds

2cu(:100,t0)=//Q h(z,t)dzdt.

The general formula for non-homogeneous problem is then

therefore we finally have

x+ct
u(x,t)zl[f(:v—l—ct)—i—f(ac—ct)]—i—i/ dy+— / h(y,s)dyds
2 2c T Q(x,t)

—ct
where

Qz,t)={(y,8): s>0, ye(z—c(t—s),z+c(t—s))}.

(150)

(151)

(152)

(153)

(154)

(155)

Note. The solution formula in the book (5.7.11) is not really useful as the authors forgot to replace h by

h*. Please take a few minutes to compare (5.7.11) in the book and our formula above.

Example 13. (§5.12, 2 b)) Solve
Ut — Cuge=x+ct, u(x,0)=xz, wuz,0)=sinz.
Solution. Here f(z)=ux, g(z)=sinz, h(z,t) =2+ ct. We evaluate
x+ct
/ sinydy = — [cos(x +ct) — cos(z —ct)] =2sinz sinct.

—ct
and

t r+c(t—s)
// y+csdyds = / / y+csdy|ds
Q(x,t) 0 T —c(t—s)

¢
= / 2zc(t—s)+2c%s(t—s)ds
0

= 2cxt2—:vct2+c2t3—§czt3
= cxt2+%02t3.

Thus the solution is

x+ct
wet) = gl swenltg, [ owdveg, [ nwsaas

—ct

= :C—l—lsinxsinct—i—l:vt?—i—gt?’.
c 2 6

Substituting back into the equation, we see that we have found the correct answer.

Example 14. (§5.12, 2 e)) Solve

Ut — Cugy=ze', wu(x,0)=sinz, uz,0)=0.

(156)

(157)

(158)

(159)

(160)



Solution. We have f(z)=sinz, g(z) =0, h(z,t) =xe’. Calculate

// h(y,s)dyds = // ye®dyds
Q(x,t) Q(x,t)
t r+c(t—s)
/ / ye®dy | ds
0 T —c(t—s)
b1 2 2
= —[(x—!—c(t—s)) —(x—c(t—2s)) }esds
0 2
t
/ 20c(t—s)e’ds

0 t t
2xc[t/ esds—/ sesds}
0 0
= 2xct(et—1)—2xctet—|—2xc(et—1)
= 2zc(ef—t—1). (161)

where the latter integral is evaluated using integration by parts:

t t t
/ sesds:/ sdeszses|6—/ efds=tel —[ef —1]. (162)
0 0 0

Putting everything together we obtain the solution

u(z,t)=sinxcosct+x (e —t—1). (163)

5. Spherical wave equations.
One can also consider wave equations in higher dimensions. For example, in 2D we have

Ut — € (Ugg +Uyy) = 0 (164)
u(z,y,0) = flz,y (165)
u(z,y,0) = g(z,y), (166)
in 3D we have
Ut — € (Ugg + Uyy +Uzz) = 0 (167)
u(@,y,2,0) = f(@,y,2) (168)
u(z,y,2,0) = g(z,y,2). (169)

Solution formulas are also available but their derivation is beyond the scope of our course here. Neverthe-
less, we will deal with a special case in 3D, where all functions only depends on the radius r =
V2 + y2 + 22,
First we need to re-write the equations so that only ¢ and r appear. Using chain rule we obtain
2 2

T T 1 T
U(T7t)zz - (uw)zz_ (UTTCE)I _2(UT7)m_uTTT_2+;ur_ﬁuru (170)
_ y- 1y
u(r,t)yy = uTTﬁ—i—;uT 3 U, (171)
22 1 22
u(r,t),, = uTrﬁ—i—;uT—ﬁur. (172)
Using the fact that 22+ y%+ 22 =72 we obtain
um—i—uyy—i—uzz:urr—i—%uT. (173)
The equations then become
utt—c2<uw—|—%ur) =0 r>0,t>0 (174)
u(r,0) = f(r) r>0 (175)

ug(r,0) = g(r) r=0 (176)



This equation can be explicitly solved through the following trick: Let

U(r,t)=ru(r,t). (177)
Then we have
Uy — Uy = 0 r>0,t>0 (178)
U(r,0) = F(r)y=rf(r) r>0 (179)
U(r,0) = G(r)=rg(r) r=0 (180)

If we assume u to be bounded, then U(0,t) =0 for all £ > 0. Thus the equation for U can be solved using
the formula we have discussed:

r+ct
l[F(r—|—ct)—|—F(7"—ct)]—|——/ G(p)dp r>ct
2 2c r—ct
Ulr,t)= . (181)
1 1 r+ct
5[F<r+ct>—F<ct—r>]+%/ G(p)dp 0<r<et
ct—r

Recalling U =1 u, we obtain

[\]
<

1 1 r+ct
E[(r—kct) fr+ct)y+(r—ct) f(r—ct)]+ C/r—ct pg(p)dp r>ct )

u(r,t) = rct
/ pg(p)dp 0<r<ct
TC Jet—r

‘ -

%[(r—i—ct) fr4+ct)—=(ct—r) f(ct—7)]+

[\)



