LECTURE 35 MATRIX EXPONENTIALS

12/05/2011

What really happens when we have n linearly independent eigenvectors.

e Recall that when we have n linearly independent eigenvectors 1, ..., ,, then the general solution is
given by
CieMtxy+- +Cpetta,. (1)

e Now consider the initial value problem: What are C1,..., (), after all? Setting ¢ =0 we obtain

We can put xy, ..., x, together to form a matrix:
X:i=(x1 -~ T ) (3)
Now we reach
Cy
z(0)=(x; - =,)| : |=Xe¢ (4)
Cn

C1
where the vector e=| : |.
Cn

e Next we try to write the general solution into matrix form.
CreMtpy+ .+ CpetMlta, = eMta; - eMlm, )c:Xk )c. (5)
Ant
en

Now as the matrix X is nonsingular (because the x;’s are linearly independent), we have
z(0)=Xc+=c=X"1z(0). (6)

Putting the above together, we reach

e Now we see that the matrix

is a significant object: It gives a universal formula for all solutions:
x(t) =(t) z(0). 9)
e We now try to find the relation between ®(¢) and A. Since ®(¢) is of the form X - something-X ~1, we

explore what happens if we try to write A in a similar way.
Recall that each x; is an eigenvector corresponding to eigenvalue );. That is

A:Bi:/\i:vi. (10)
Putting all x;’s in a row to form the matrix X, we get
A1 0
0 An
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Multiply both sides by X ! from the right — recall that matrix multiplication is not commutative
— we reach

A1 0
a=x| " . ]x— (12)
0 An
Comparing
A1 0
A=X . X! (13)
0 An
with
et 0
O(t):=X X! (14)
0 ernt
we want to say
O(t) = et (15)
Then the solution to
z=Ax (16)
is simply
2(t) = e 2(0), (17)
a perfect generalization of the single linear equation:!
& =ar= z(t) =€ z(0). (18)

Definition of matrix exponentials.

However how to define e for a general matrix A?

Matrix functions: Given a square matrix A, what kind of functions can be readily generalized to take
A as its variable? Polynomials — as matrix products are already well-defined. For example

flx)=2*+32—-1= f(A)=A3+3A—-I. (19)
Now how to define e*? Taylor expansion!
2 2 o0 k
T __ L A.__ A _ A
er=ltat ot =re ._I+A+7+-~-_;H. (20)
Is this what we want?
o Check the special case:
A1 0
A=X X1 =
0 An
At 0 At 0
(At)k = X X1 X . x-1
0 Ant 0 An t
Art 0 At 0
= X XX X-t.x—!t
0 At 0 Ant

1. However see homework: Such generalizations are actually subtle.
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Recall that matrix multiplication is associative, which means we can freely “pair up” adjacent

matrices:
Art 0 At 0
(At)F = X (X71X) . (X 1X). X1
0 Ant 0 Ant
At 0 At 0
= X '.. ees '.' X71
0 Ant 0 Ant
\Ftk 0 \
= X - XL
0 AE ¢k )
Now it’s easy to see
( 5 M /\1tk \ At 0
et = L . X=X X 1=a(t) (22)
kk Ant
E o

Matrix exponentials and first order systems.

Theorem 1. Consider the first order system @& = Ax. Then ®(t) =e?? as defined above satisfies

d(t)=Ad(t),  d0)=1I. (23)
and consequently the solution of
z=Ax, z=x(0) at t=0 (24)
is given by
x(t) = o(t) 2(0) (25)

Proof. ®(0)=X"'1X =1. Compute

Ak ¢k Ak k=1 0 Ak+1 4k > Ak ¢k > Ak ¢k
Zdt( il >_Z G S AT A =40, (26)
k=1 k=0 k=0 k=0

The last few stpes may seem too obvious to worth writing down, but in fact it’s important to clearly write
down every “obvious” step. See homework.
Now we have

:i:(t):%(Q)(t)w(O)):<i>(t)w(0):A<I>(t)m(O):Am(t). (27)
Finally (x at t=0)=®(0) x(0) =ITx(0)==(0). O

Remark 2. Note that in the above proof what we actually show is that ®(¢) x(0) is a solution of the system.
That this suffices is due to the fact that the solution is unique — so “a solution” gets a “free upgrade” to “the
solution”.

Calculation of matrix exponentials — Simple case.

e Clearly it’s not a good idea to use the definition:

> k
—I+A+—+ :Z %. (28)
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e When A has n linearly independent eigenvectors, we have shown that
A=XAX! (29)
where X = (@ .. =,) is the matrix formed by putting these n eigenvectors in a row, and A =
( . R > is a diagonal matrix with the corresponding eigenvalues as diagonal entries. In this case

we know that

eA:X X_l. (30)

Example 3. Compute e with
2 -1
(2 0) -
Solution. First obtain the eigenvalues:

2—-X -1
det( 3 —9_)\ )—O:>)\172—1,—1. (32)

Next find a set of 2 linearly independent eigenvectors:
(3)(2)-(0)=(2)==(1) 5
(35)(2)-()=(2)=(5) o

X—<1§) (35)

_ Lo -1 A_ et 0 -1
A—X<O _1>X —e —X( 0 6_1>X . (36)

o For 1, solve

o for —1, solve

So

and

To get the final answer we need to find X ~1, through solving X X ~! =TI using Gaussian elimination:

1110 . 11 1 0
1301 02 —-11
< 11 1 0 )
— 11
01 =33
1o 2 -1
- 0 21 12 (37)
T2 2
We get
3 1
X—l_ 21 12 (38)
T2 2
Now we compute
3 1 3 1 1 1 1
a_( 11 e 0 2 "2 |_[| 2¢73¢  —3¢t3e (39)
=113 0 e-! 11 =1 3 3 1 1 3 1 |
3 2 3¢-3¢  —zetge
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Calculation of matrix exponentials — General case.

What if we do not have n linearly independent eigenvectors? Note:

A 0
A=X X ~!— Each column of X is an eigenvector (40)
0 An

Therefore when we do not have n linearly independent eigenvectors, it’s not possible to reduce A to
a diagonal matrix — that is not possible to “diagonalize” A.

Key property: If A=XBX ! then ef=XeB X1

Question: What is the simplest matrix that all n x n matrices A can be reduced to?
(7 )
Jo

J—L . ) (41)
-

where each Ji = is called a “Jordan block”.
Al
A

Answer: Jordan canonical form.

> =
=

Theorem 4. Any n x n matriz can be written as A = X J X' where J is of the above form.
Furthermore, the columns of X (denote by @1,..., T.,) corresponding to one “Jordan block” is related
in the following manner:

(A—/\I)iltlzo; (A—/\I)CBH_l:wi. (42)

It may help to see an example. Suppose we have

Al
A=X Al | XL (43)
A
Multiply both sides by X from right, we reach
Al Al
A(wl o 1133):AX=X Al 2(1131 o $3) Al (44)
A A
Carry out the multiplication we reach
(Awl Axo Aw3)=(/\$1 1+ Axo wg-‘r/\iltg) (45)
which means
(A=X)x, 0 (46
(A=Nm2 = (47
(A-Nzs = o (48
How to compute e”’.
o Observation I:
n J ( et \
exp 2 = : (49)
A k e’ )

o Observation II:
AMAHA A LA (50)
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for any matrix A.

01
0 1
o Observation III: Let B( be k x k, then
01
0
(0 0 1 (0 001 \
0 0 1 00 0 -,
B?= o, BP= (51)
0 0 00
0 0
consequently
BfF =0, (52)
and
1 1
115 (k—1)!
11 :
eb = . 1 (53)
2
1 1
1
and
t2 tkfl
1t 2 (k—1)!
1t :
eBt = 2 (54)
2
1 t
1
Example 5. Solve
(3 10 o\
10310
2= 5030 |® (55)
0001

using matrix exponentials.
Solution. The matrix is already in Jordan canonical form. We see that there are two Jordan blocks:

70 310
A_( 01 J ) Ji=l 031 ], Jo=(1). (56)
2 003
By Observation I we have
ett 0
eAt_( . 6J2t> (57)
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Therefore
et tedt e 0
3¢ 3¢
At — 0 e t eg)5 0 (59)
0 O e 0
0 O 0 et

Ille geIleIal S()lutl()ll 1S NOW
( ’ \ 31 E ( \
3 O

ete=cy 8 + ¢ eO +es| e;t +cq o | (60)
e
0 0 0 et

Remark. Now we see where the ¢, t2, ... etc. come from! And furthermore we see why how many
powers of t are needed cannot be determined by the algebraic and geometric multiplicities alone:
Compute the following two A’s (in the context of computing e4?):

/3;’ \and(3;1 \ (61)
L))

In both cases, the eigenvalue 3 has algebraic multiplicity 4 and geometric multiplicity 2. However in
the former case e? involves only 3 and t e3f, while in the latter case t? €3t will also appear.




