LECTURE 33 SOLVING FIRST ORDER HOMOGENEOUS CONSTANT COEFFICIENT

Idea.

SYSTEM
11/30/2011
Need to solve
1 = anT1+-+ainTy (1)
jn = Ap1T1+ -+ AnnTn (2)
or in matrix form:
z=Azx (3)
with
X1 a11 A1n
r= , A= : (4)
Ty Gn1 Unn
What do we know about the solution:
o General solution is of the form
CizV+...+C, ™ (5)

with ), ..., ™ solutions, linearly independent.
o Therefore, all we need to do is to find n linearly independent solutions.

Try e g with 2 a constant vector. Compute

d
a(e)‘t xo) =AeMxg (6)
The equation now becomes
NeMrg=AeMrge= Azg= zo=\ 0= (A—\I)2((=0. (7)

At

Therefore: e* x( is a solution <= X is an eigenvalue and x( is an corresponding eigenvector.

How do we tell whether solutions e*ta{", .. e*tx{" are linearly independent or not?

o They are linearly independent <= their Wronskian is nonzero at t =0 <—- :1381), ey :138") are
linearly independent.

Conclusion: If we can find n linearly independent eigenvectors :B(()l), ey :B(()") with corresponding

eigenvalues A1, ..., A, (note that some of the \;’s may repeat), then the general solution is given by
C e)‘ltwgl)—l—--- +C, eA"tw((J"). (8)

Remark. The textbook, due to its intending to discuss the phase plane and the behavior as t / oo of
the solutions, makes a distinction between n distinct eigenvalues and some eigenvalues are repeated.
Since we focus on getting formulas for solutions, this distinction is not important anymore. There are
only two cases: We have n linearly independent eigenvectors, or not. We deal with the former case in
this lecture, and leave the latter to the next.

Examples.

Example 1. Solve

1 = z1+4x, (9)
.I.Q = {E1—2I2. (10)
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Solution. First re-write into matrix form:

Now we find the eigenvalues/eigenvectors for A= ( } f2 )

1-X 4

det(A—)\I):det< 1 _a_1

>:)\2+)\—6:>)\1:—3,/\2:2. (12)

Next find eigenvectors corresponding to —3: Solve

(1—5—3) _2_4(_3) )(i; >=(8)‘:*(411 %)(i; >=(8)<:>:61+:v2=0. (13)

therefore the eigenvectors corresponding to —3 are

For 2 we have

The general solution to the system is then given by

0163t< ! )+0262t( ) ) (17)

T, = Cle_3t+40262t; (18)
Ty = —01673t+0262t. (19)

or equivalently

Example 2. Solve initial value problem (that is, find the real general solution)
Jfl = —LL’1+5$2; ,Tl(O):O (20)
.I.Q = —4I1—5$2; IQ(O =1 (21)

Solution. For initial value problems, we first find the general solution, then determine the constants using
the initial conditions.
Preparation: Write the problem in matrix form:

d X1 _ -1 5 I _ -1 5
a(n)=(55)(0) =25 5) &
First find the eigenvalues:

det( _:A —55—)\ >_0<:>/\2+6/\+25—0:>/\1,2——3i4i- (23)

Now find the corresponding eigenvectors:

e For the eigenvalue —3 + 44, we solve

(2:;” —25—42')(2):(8)' (24)
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It may not be obvious at first sight that the two rows are linked by a constant factor, so we go through
Guassian elimination:

. 1+2% 1424
<2—4z 5 ' 0)_> 1 > 0y _[1 50} (25)
-4 —-2-44 0 —4 —2-45 0 0 0 0

So ( 1 ) is an eigenvector (corresponding to the eigenvalue —3 +41) if and only if
T2

(5) ()= (3) == (=) mem () = (307

therefore the eigenvectors corresponding to —3 441 are:

cl< ‘%1” ) (27)

1, .
02< _51“ ) (28)
Thus the general solution is

1. 1, .
( X1 )_Ole(—3+4i)t< -3 >+02 e(_3—41')( —54—@ ) (29)
T2 1 1

However this is complex. How should we get the real solutions?
Notice that A is a real matrix. Therefore if & + iy is a complex solution to the equation, we have

with an arbitrary constant a.

e For —3 — 41, similar calculation gives

%(m+iy):A(:c+iy)<:}dz+iy:A:c+iAy<:}d::A:c and y=Auy. (30)
Inspired by this, we look at the situation again. We know that 6(73““”( E ' ) solves the equation. Now
expand
, 1 _1 -1
e(—3+40)t 2 = e 3t[cosdt+isindt] 2 —i—i( )
1 1 0
_L 1
= e 3| cos4t 2 +sin4t( )
1 0
1 1
+ie=3t cos4t( 0 >+sin4t 12 : (31)
Thus both

1 1
e‘3tlcos4t< _15 >+sin4t( (1) )1 and e‘3tlcos4t( _01 >+sin4t< _15 )] (32)

are real solutions to the problem. And they are indeed guaranteed to be linearly independent!. Therefore

the general (real) solution is
-1 _1
+ Coe 3 cos4t< 0 >+sin4t 12 (33)

1
C1e_3t[cos4t< _15 >+sin4t< (1) >

1. See homework problem.
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or in more detail:

T, = e—3t|:(—%—02>cos4t+(Cl—%>sin4t:| (34)
19 = e 3[(Crcosdt+ Cosindt))]. (35)
Finally we deal with the initial conditions: z1(0) =0, x2(0) =1 means
—%—cz — 0 (36)
C, =1 (37)
So C1=1,C= —%. The solution to the initial value problem is
T = %e‘3tsin4t (38)
ro = e 3t cos4t—%sin4t : (39)
Summary.
e To solve
z=Azx (40)
1. Solve
det (A—XI)=0 (41)

to obtain all the eigenvalues;

2. For each eigenvalue, find all corresponding eigenvectors, represented as

axi+bxo+--- (42)
with @1, ®, ... linearly independent.

3. If overall we have n eigenvectors already?, then the general solution is

o e)‘ltwgl)—k--- +Cy eA”tm((J"). (45)
where :cél), e w(()") are the n eigenvectors, and Aq, ..., A, (may or may not be distinct) are the
corresponding eigenvalues.

o In the case of complex eigenvalues, we have to do the following. Let A=« + i 3 be a
complex eigenvalue with a set of linearly independent eigenvectors @1 +14 y1, 2+ 17 Yo, ....

Then we have to replace the e* (x;+i y;) and e (x; —i y;) terms in the general solution
formula by

et [(cos Bt) x; — (sinBt) y;] and e [(sin Bt) z; + (cos B3t) yi] (46)

2. Note that here we have used implicitly the fact that eigenvectors corresponding to different eigenvalues are linearly
independent. To prove this one needs to know that that the Vandermonde determinant

1 e 1
S I (43)
)\?71 )\:71

when all \;’s are distinct. This fact can be proved in two ways. One way uses mathematical induction to prove that its
determinant is in fact II(A; — A;); The other considers the following

1 1 1
A A= A
det| At (44)
)\?.71 )\2:% )\n.fl

which is clearly a polynomial of A of degree at most n — 1. Such a polynomial has at most n — 1 roots. But clearly Aj, ..
An—1 are roots. Therefore the determinant is nonzero for any A A, ..., Ap—1.

i3]



