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Idea.

• Need to solve

ẋ1 = a11x1 +
 + a1n xn (1)� � �
ẋn = an1 x1 +
 + ann xn (2)

or in matrix form:

ẋ = Ax (3)

with

x =





x1�
xn



, A=





a11 
 a1n� 
 �
an1 
 ann



. (4)

• What do we know about the solution:

◦ General solution is of the form

C1 x
(1) +
 +Cn x

(n) (5)

with x
(1),	 , x(n) solutions, linearly independent.

◦ Therefore, all we need to do is to find n linearly independent solutions.

• Try eλt
x0 with x0 a constant vector. Compute

d

dt
(eλt

x0)= λ eλt
x0 (6)

The equation now becomes

λ eλt
x0 = Aeλt

x0� Ax0 = λ x0 =λ Ix0� (A−λ I) x0 =0. (7)

• Therefore: eλt
x0 is a solution� λ is an eigenvalue and x0 is an corresponding eigenvector.

• How do we tell whether solutions eλ1t
x0

(1)
,	 , eλnt

x0
(n) are linearly independent or not?

◦ They are linearly independent� their Wronskian is nonzero at t = 0� x0
(1)

, 	 , x0
(n)

are
linearly independent.

• Conclusion: If we can find n linearly independent eigenvectors x0
(1)

, 	 , x0
(n)

with corresponding
eigenvalues λ1,	 , λn (note that some of the λi’s may repeat), then the general solution is given by

C1 eλ1t
x0

(1) +
 + Cn eλnt
x0

(n)
. (8)

Remark. The textbook, due to its intending to discuss the phase plane and the behavior as tր∞ of
the solutions, makes a distinction between n distinct eigenvalues and some eigenvalues are repeated.
Since we focus on getting formulas for solutions, this distinction is not important anymore. There are
only two cases: We have n linearly independent eigenvectors, or not. We deal with the former case in
this lecture, and leave the latter to the next.

Examples.

Example 1. Solve

ẋ1 = x1 + 4x2 (9)

x2˙ = x1− 2x2. (10)
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Solution. First re-write into matrix form:

ẋ =

(

1 4
1 −2

)

x. (11)

Now we find the eigenvalues/eigenvectors for A=
(

1 4
1 −2

)

.

det (A−λ I)= det

(

1−λ 4
1 −2−λ

)

= λ2 +λ− 6� λ1 =−3, λ2 = 2. (12)

Next find eigenvectors corresponding to −3: Solve
(

1− (−3) 4
1 −2− (−3)

)(

x1

x2

)

=

(

0
0

)�(

4 4
1 1

)(

x1

x2

)

=

(

0
0

)� x1 + x2 = 0. (13)

therefore the eigenvectors corresponding to −3 are
(

x1

x2

)

=

(

x1

−x1

)

=x1

(

1
−1

)

. (14)

For 2 we have
(

−1 4
1 −4

)(

x1

x2

)

=

(

0
0

)� x1 = 4x2 (15)

so the eigenvectors corresponding to 2 are
(

x1

x2

)

=x2

(

4
1

)

. (16)

The general solution to the system is then given by

C1 e−3t

(

1
−1

)

+ C2 e2t

(

4
1

)

(17)

or equivalently

x1 = C1 e−3t + 4C2 e2t; (18)

x2 = −C1 e−3t +C2 e2t. (19)

Example 2. Solve initial value problem (that is, find the real general solution)

x1˙ = −x1 +5 x2; x1(0) =0 (20)

x2˙ = −4x1− 5x2; x2(0)= 1 (21)

Solution. For initial value problems, we first find the general solution, then determine the constants using
the initial conditions.

Preparation: Write the problem in matrix form:

d

dt

(

x1

x2

)

=

(

−1 5
−4 −5

)(

x1

x2

)� A =

(

−1 5
−4 −5

)

. (22)

First find the eigenvalues:

det

(

−1−λ 5
−4 −5−λ

)

=0� λ2 + 6 λ+ 25= 0� λ1,2 =−3± 4 i. (23)

Now find the corresponding eigenvectors:

• For the eigenvalue −3 + 4 i, we solve
(

2− 4 i 5
−4 −2− 4 i

)(

x1

x2

)

=

(

0
0

)

. (24)
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It may not be obvious at first sight that the two rows are linked by a constant factor, so we go through
Guassian elimination:

(

2− 4 i 5 0
−4 −2− 4 i 0

)

→

(

1
1 +2 i

2
0

−4 −2− 4 i 0

)

→

(

1
1+ 2 i

2
0

0 0 0

)

. (25)

So
(

x1

x2

)

is an eigenvector (corresponding to the eigenvalue −3+ 4 i) if and only if

(

1
1 +2 i

2

0 0

)

(

x1

x2

)

=

(

0
0

) � x1 =

(

−
1

2
− i

)

x2 � (

x1

x2

)

=

(

(

−
1

2
− i
)

x2

x2

)

=

x2

(

−
1

2
− i

1

)

. (26)

therefore the eigenvectors corresponding to −3+ 4 i are:

C1

(

−
1

2
− i

1

)

(27)

with an arbitrary constant a.

• For −3− 4 i, similar calculation gives

C2

(

−
1

2
+ i

1

)

. (28)

Thus the general solution is

(

x1

x2

)

=C1 e(−3+4i)t

(

−
1

2
− i

1

)

+ C2 e(−3−4i)

(

−
1

2
+ i

1

)

. (29)

However this is complex. How should we get the real solutions?
Notice that A is a real matrix. Therefore if x + iy is a complex solution to the equation, we have

d

dt
(x + iy)= A (x + i y)� ẋ + i ẏ = Ax + iA y� ẋ =A x and ẏ = A y. (30)

Inspired by this, we look at the situation again. We know that e(−3+4i)t
(

−

1

2
− i

1

)

solves the equation. Now

expand

e(−3+4i)t

(

−
1

2
− i

1

)

= e−3t [cos 4 t + i sin 4 t]

[(

−
1

2

1

)

+ i

(

−1
0

)

]

= e−3t

[

cos 4 t

(

−
1

2

1

)

+ sin 4 t

(

1
0

)

]

+i e−3t

[

cos 4 t

(

−1
0

)

+ sin 4 t

(

−
1

2

1

)]

. (31)

Thus both

e−3t

[

cos 4 t

(

−
1

2

1

)

+ sin 4 t

(

1
0

)

]

and e−3t

[

cos 4 t

(

−1
0

)

+ sin 4 t

(

−
1

2

1

)]

(32)

are real solutions to the problem. And they are indeed guaranteed to be linearly independent1. Therefore
the general (real) solution is

C1 e−3t

[

cos 4 t

(

−
1

2

1

)

+ sin 4 t

(

1
0

)

]

+C2 e−3t

[

cos 4 t

(

−1
0

)

+ sin 4 t

(

−
1

2

1

)]

(33)

1. See homework problem.
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or in more detail:

x1 = e−3t

[(

−
C1

2
−C2

)

cos 4 t +

(

C1−
C2

2

)

sin 4 t

]

(34)

x2 = e−3t [(C1 cos 4 t + C2 sin 4 t)]. (35)

Finally we deal with the initial conditions: x1(0)= 0, x2(0) =1 means

−
C1

2
−C2 = 0 (36)

C1 = 1 (37)

So C1 = 1, C2 =−
1

2
. The solution to the initial value problem is

x1 =
5

4
e−3t sin 4 t (38)

x2 = e−3t

[

cos 4 t−
1

2
sin 4 t

]

. (39)

Summary.

• To solve

ẋ = Ax (40)

1. Solve

det (A−λ I) =0 (41)

to obtain all the eigenvalues;

2. For each eigenvalue, find all corresponding eigenvectors, represented as

a x1 + b x2 +
 (42)

with x1, x2,	 linearly independent.

3. If overall we have n eigenvectors already2, then the general solution is

C1 eλ1t
x0

(1)
+
 + Cn eλnt

x0
(n)

. (45)

where x0
(1)

,	 , x0
(n)

are the n eigenvectors, and λ1,	 , λn (may or may not be distinct) are the
corresponding eigenvalues.

◦ In the case of complex eigenvalues, we have to do the following. Let λ = α + i β be a
complex eigenvalue with a set of linearly independent eigenvectors x1+ i y1,x2+ i y2,	 .

Then we have to replace the eλt (xi+ i yi) and eλ̄ (xi− i yi) terms in the general solution
formula by

eαt [(cos β t) xi − (sinβ t) yi] and eαt [(sin β t)xi +(cos β t) yi] (46)

2. Note that here we have used implicitly the fact that eigenvectors corresponding to different eigenvalues are linearly
independent. To prove this one needs to know that that the Vandermonde determinant

det











1 
 1
λ1 
 λn� 
 �

λ
1

n−1 
 λn
n−1











� 0 (43)

when all λi’s are distinct. This fact can be proved in two ways. One way uses mathematical induction to prove that its
determinant is in fact Π(λi −λj); The other considers the following

det











1 
 1 1
λ1 
 λn−1 λ� 
 � �

λ
1

n−1 
 λn−1

n−1
λn−1











(44)

which is clearly a polynomial of λ of degree at most n − 1. Such a polynomial has at most n − 1 roots. But clearly λ1,	 ,

λn−1 are roots. Therefore the determinant is nonzero for any λ� λ1,	 , λn−1.
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