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Mathematical Modeling.
e A single differential equation models the time evolution of one quantity of interest.
e When there are two or more quantities of interest, we need two or more equations to model them.

e In general, these quantities will interact with one another, so the equations will be “coupled” — we
cannot get information of any one quantity by looking at its equation alone, and have to treat the
several equations as a whole, in other words, a system.

e For example of modeling, see the textbook, or my notes for last year’s 334.
Theoretical Issues.
¢ Reduction to First Order
o Any system of ordinary differential equations can be written as a bigger, but first order, system.

o Example:

i = y*+ @)+« (1)
x? (2)
becomes, after introducing z =%,
= y?+23+42 (3)
= z (4)
2’ (5)

e Existence and Uniqueness

o Only need to consider the first order system:

fl = Fl(t,xl,...,xn) (6)
17.2 = Fg(t,xl,...,xn) (7)
Tn = Fu(t,z1,...,25) (8)
with initial conditions:
.Il(t()) :I?aaxn(to)::r?l (9)
o Let R be aregion in the t-z1-zo-----z,, space (which is n+ 1 dimensional) containing the point
(to,x(l), ...,x%). If all the partial derivatives gf 1=1,2,...,n;5=1,2,...,n remain bounded in R,
J
then there is a unique solution (x1(t), ..., x,(t)) satisfying both the equations and the initial
condition.
o For example, for the system
2= P+ 4 (10)
= z (11)
j = o8 (12)

Take R to be any bounded domain in the four-dimensional space R?* (¢, x, y, z), we compute
all 9 partial derivatives

Oy + 23+ o) s Oy +23+12) oNy*+22+x)

0z 325 oy 2y, ox L (13)
0z 0z 0z o(x3) ax®) o O3
&_1’ %_O’ 8_y_o’ 0z =0, Ox =325 Ay =0 (14)
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and see that all of them are bounded on R. Therefore this system has a unique solution given
any initial point inside R.

First Order Linear Constant-coefficient System.

e Such system looks like

x'l = a11x1+---+a1n:1:n+gl(t) (15)
Ty = an1$1+"'+annxn+gn(t)' (16)
For example
i = 3x+2y+5z+t (17)
= 2x+y+et (18)
z = bx+2y+3z+t. (19)

e Significance.
o We have seen that any system can be reduced to first order.
o The significance of linear constant-coefficient systems are two-fold:

— For any system there are one or more linear systems which can describe the solution of
the original nonlinear system around most important locations — the so-called “equilib-
rium points”.

—  We can solve them completely.

e Basic Theory of first order linear system:

T = pll(t) x1+---+p1n(t) :vn—l—gl(t) (20)
Ty = Pp1(t) T1 4+ Dun(t) Tn+ gu(t). (21)
o General solution:
Z1
)= : |=ciaW@)+ -+ cox™(t) +x,(t) (22)
Tn

with

2P () .
w(l)(t):( 1 z(t) \,...,w(")(t)Z( 1 z(t) \ x,(t) = pé(t) ' (23)
k 0 ) k (1) ) Tpn(t)

21(t) = c1alV(t) + o+ cnal(E) + 2 (E), (24)
zo(t) = clxg)(t)—i--"—l—cn:vgln)(t)—i—xpn(t). (25)
In matrix form:
zt)=X{t)c+zx, (26)
where
2V - 2V o
X(t)= P , e=| : (27)
2D - al) n

and x,x, as defined previously.

o x, is a “particular solution”, that is, any one solution of the system under consideration.
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W, .. ™ form a “fundamental set” for the corresponding homogeneous system:

Z1 = pu(t)x1+ -+ p1a(t) z, (28)

That is, they are solutions, and they are linearly independent.

Wronkian. The Wronskian of n solutions to the homogeneous system

I.l = pll(t) $1++p1n(t) Tn (30)
is defined as
W[w(l),...,w(")} =det X (¢) (32)

with

w(l)(t):kaE’(t) )mw(n)(t):kx;"s><t> ) X(t):kx,(f)(w . x;)(w ) >

— W satisfies

dw

e (p11(t) + - + pon(t)) W. (34)

—  Asa consequence Wronskian is either never 0 or is 0 for all ¢ (as long as all the coeflicients
pi;(t) remain bounded)

— M, .., 2™ form a fundamental set if and only if their Wronskian is nonzero at the
initial time ¢y (or any other single time).



