LECTURE 28 IMPULSE FUNCTIONS

11/18/2011

Impulse functions.

- Impulse functions are functions that are zero everywhere except at one single points, and furthermore when integrated over \mathbb{R} give a nonzero value.
- Unit impulse function (guess this is engineering jargon. In physics it's known as the Dirac δ -function, and in mathematics just δ).

$$\delta(t) = 0$$
 for all $t \neq 0$, and $\int_{-\infty}^{\infty} \delta(t) dt = 1$.

• Translations:

$$\delta(t-a) = 0 \text{ for all } t \neq a, \qquad \int_{-\infty}^{\infty} \delta(t-a) = 1.$$
 (1)

- Properties.
 - o It's easy to see that

$$\int_{t_1}^{t_2} \delta(t - a) \, \mathrm{d}x = \begin{cases} 0 & a < t_1 \text{ or } a > t_2 \\ 1 & t_1 < a < t_2 \end{cases}$$
 (2)

Remark. What if $t_1 = a$ or $t_2 = a$? In these cases we have to clarify whether our $\delta(t-a)$ means $\delta(t-(a+))$ – a unit impulse just to the right of a, $\delta(t-(a-))$ – a unit impulse just to the left of a, or $\delta(t-a)$ that is a unit impulse sit right at a. The reasonable values of $\int_a^{t_2} \delta(t-a) \, \mathrm{d}x$ are then

$$\int_{a}^{t_2} \delta(t - (a + 1)) = 1; \qquad \int_{a}^{t_2} \delta(t - (a - 1)) = 0; \qquad \int_{a}^{t_2} \delta(t - a) = \frac{1}{2}. \tag{3}$$

Similar argument works if $t_2 = a$.

 \circ More generally we have, for any continuous function f,

$$\int_{t_1}^{t_2} \delta(t-a) f(t) dt = \begin{cases} 0 & a < t_1 \text{ or } a > t_2 \\ f(a) & t_1 < a < t_2 \end{cases}$$
 (4)

To see why, consider the following argument:

- The first case is obvious;
- To prove the second case, first realize what continuity of f (at a) means: Given any $\varepsilon > 0$, there is $\delta > 0$ such that when $|t a| < \delta$, $|f(t) f(a)| < \varepsilon$.
- Now consider a given $\varepsilon > 0$. Let δ be as in above. If $|t_1 a|$ or $|t_2 a|$ is even smaller than δ , change δ to that smaller value.
- Now compute

$$\int_{t_1}^{t_2} \delta(t-a) f(t) dt = \int_{a+\delta}^{t_2} \delta(t-a) f(t) dt$$

$$+ \int_{a-\delta}^{a+\delta} \delta(t-a) f(t) dt$$

$$+ \int_{t_1}^{a-\delta} \delta(t-a) f(t) dt$$

$$= 0 + \int_{a-\delta}^{a+\delta} \delta(t-a) f(t) dt + 0$$

$$= \int_{a-\delta}^{a+\delta} \delta(t-a) f(t) dt$$

$$= \int_{a-\delta}^{a+\delta} \delta(t-a) f(a) dt + \int_{a-\delta}^{a+\delta} \delta(t-a) (f(t) - f(a)) dt$$

$$= f(a) \int_{a-\delta}^{a+\delta} \delta(t-a) dt + \int_{a-\delta}^{a+\delta} \delta(t-a) (f(t) - f(a)) dt$$

$$= f(a) + \int_{a-\delta}^{a+\delta} \delta(t-a) (f(t) - f(a)) dt.$$
 (5)

- Finally notice:

$$\left| \int_{a-\delta}^{a+\delta} \delta(t-a) \left(f(t) - f(a) \right) dt \right| \leq \int_{a-\delta}^{a+\delta} \delta(t-a) \left| f(t) - f(a) \right| < \varepsilon \int_{a-\delta}^{a+\delta} \delta(t-a) = \varepsilon$$
 (6)

Summarizing what we have shown:

$$\left| \int_{t_1}^{t_2} \delta(t-a) f(t) \, \mathrm{d}t - f(a) \right| < \varepsilon. \tag{7}$$

As ε can be any positive number, it must be true that

$$\left| \int_{t_1}^{t_2} \delta(t-a) f(t) \, \mathrm{d}t - f(a) \right| = 0.$$
 (8)

Laplace transform of impulse functions.

In our class we only consider $a \ge 0$. Since all we care about is what happens when $t \ge 0$.

• Clearly e^{-st} is continuous for every s. So

$$\mathcal{L}\{\delta(t-a)\} = \int_0^\infty e^{-st} \,\delta(t-a) \,\mathrm{d}t = e^{-as}. \tag{9}$$

• More generally, if f(t) is continuous, then so is $e^{-st} f(t)$ and we have

$$\mathcal{L}\lbrace f(t)\,\delta(t-a)\rbrace = \int_0^\infty e^{-st}\,f(t)\,\delta\left(t-a\right)\mathrm{d}t = e^{-as}\,f(a). \tag{10}$$

Example 1. Compute

$$\mathcal{L}\left\{e^{-t^2}\sin\left(\sqrt{3}\ln\left(\cos t\right)\right)\delta(t-1)\right\}.\tag{11}$$

Solution. Identify

$$f(t) = e^{-t^2} \sin(\sqrt{3}\ln(\cos t)), \qquad a = 1.$$
 (12)

So

$$\mathcal{L}\left\{e^{-t^{2}}\sin\left(\sqrt{3}\ln(\cos t)\right)\delta(t-1)\right\} = e^{-as}f(a) = e^{-s}e^{-1}\sin\left(\sqrt{3}\ln(\cos 1)\right). \tag{13}$$

Equations with impulse right hand side.

Example 2. Solve

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi), \qquad y(0) = 0, \quad y'(0) = 0.$$
(14)

Solution.

First take Laplace transform of the equation: Recall

$$\mathcal{L}\{y''\} = s^2 Y - s y(0) - y'(0). \tag{15}$$

So the transformed equation is

$$(s^2 + 4) Y = e^{-\pi s} - e^{-2\pi s}. (16)$$

Next find Y:

$$Y = \frac{e^{-\pi s}}{s^2 + 4} - \frac{e^{-2\pi s}}{s^2 + 4}.\tag{17}$$

11/18/2011 3

Finally take the inverse transform: Recall

$$\mathcal{L}^{-1}\{e^{-as}F(s)\} = u(t-a)f(t-a)$$
(18)

where $f(t) = \mathcal{L}^{-1}\{F(s)\}.$

• $\mathcal{L}^{-1}\left\{\frac{e^{-\pi s}}{s^2+4}\right\}$: Identify $a=\pi$, $F(s)=\frac{1}{s^2+4}$. So $f(t)=\frac{1}{2}\sin{(2\,t)}$. Therefore

$$\mathcal{L}^{-1}\left\{\frac{e^{-\pi s}}{s^2+4}\right\} = u(t-\pi) f(t-\pi) = u(t-\pi) \frac{1}{2} \sin(2(t-\pi)) = \frac{1}{2} u(t-\pi) \sin(2t). \tag{19}$$

• $\mathcal{L}^{-1}\left\{\frac{e^{-2\pi s}}{s^2+4}\right\} = \frac{1}{2}u(t-2\pi)\sin(2t).$

So finally

$$y = \frac{1}{2}\sin(2t)\left[u(t-\pi) - u(t-2\pi)\right]. \tag{20}$$

To understand the solution better, we can further write it into the piecewise form:

$$y = \begin{cases} 0 & t < \pi \\ \frac{1}{2}\sin(2t) & \pi < t < 2\pi \\ 0 & t > 2\pi \end{cases}$$
 (21)

Example 3. Solve

$$2y'' + y' + 4y = \delta\left(t - \frac{\pi}{6}\right)\sin(t), \qquad y(0) = y'(0) = 0.$$
(22)

Solution. First recall

$$\mathcal{L}\{y''\} = s^2 Y - s y(0) - y'(0); \tag{23}$$

$$\mathcal{L}\{y'\} = sY - y(0) \tag{24}$$

$$\mathcal{L}\lbrace y'\rbrace = s Y - y(0) \tag{24}$$

$$\mathcal{L}\lbrace \delta\left(t - \frac{\pi}{6}\right)\sin(t)\rbrace = e^{-\frac{\pi}{6}s}\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}e^{-\frac{\pi}{6}s}.\tag{25}$$

Now we can write down the transformed equation

$$(2s^2 + s + 4)Y = \frac{1}{2}e^{-\frac{\pi}{6}s}. (26)$$

This gives

$$Y(s) = \frac{1}{2} \frac{e^{-\frac{\pi}{6}s}}{2s^2 + s + 4}.$$
 (27)

To compute inverse transform recall

$$\mathcal{L}^{-1}\{e^{-as}F(s)\} = u(t-a)f(t-a). \tag{28}$$

Identify:

$$F(s) = \frac{1}{2} \frac{1}{2s^2 + s + 4}; \qquad a = \frac{\pi}{6}.$$
 (29)

We need to compute

$$f(t) = \mathcal{L}^{-1} \left\{ \frac{1}{2} \frac{1}{2s^2 + s + 4} \right\}$$

$$= \frac{1}{4} \mathcal{L}^{-1} \left\{ \frac{1}{s^2 + s/2 + 2} \right\}$$

$$= \frac{1}{4} \mathcal{L}^{-1} \left\{ \frac{1}{\left(s + \frac{1}{4}\right)^2 + \frac{31}{16}} \right\}$$

$$= \frac{1}{4} e^{-t/4} \frac{4}{\sqrt{31}} \sin\left(\frac{\sqrt{31}}{4}t\right)$$

$$= \frac{1}{\sqrt{31}} e^{-t/4} \sin\left(\frac{\sqrt{31}}{4}t\right).$$

Now we can write

$$y = \mathcal{L}^{-1} \left\{ \frac{1}{2} \frac{e^{-\frac{\pi}{6}s}}{2s^2 + s + 4} \right\} = u \left(t - \frac{\pi}{6} \right) \frac{1}{\sqrt{31}} e^{-\left(t - \frac{\pi}{6}\right)/4} \sin\left(\frac{\sqrt{31}}{4} \left(t - \frac{\pi}{6}\right)\right).$$
 (30)