LECTURE 11 UNDETERMINED COEFFICIENTS (CONT.)

Sep. 30, 2011

The method: Review.

• Target equations:

$$ay'' + by' + cy = g(t) \tag{1}$$

with a, b, c constants, and g(t) of one of the following two types

- 1. $g(t) = e^{\alpha t} (a_0 + \dots + a_n t^n);$
- 2. $g(t) = e^{\alpha t} \cos \beta t (a_0 + \dots + a_n t^n)$ or $g(t) = e^{\alpha t} \sin \beta t (a_0 + \dots + a_n t^n)$.
- Procedure.
 - Step 1: Solve the homogeneous equation

$$ay'' + by' + cy = 0.$$
 (2)

Get y_1, y_2 and also a list of roots for the characteristic equation $a r^2 + b r + c = 0$.

- Step 2: Guess a "particular solution" y_p using the following rules:
 - If $g(t) = e^{\alpha t} (a_0 + \dots + a_n t^n)$, guess

$$y_p = t^s e^{\alpha t} \left(A_0 + \dots + A_n t^n \right). \tag{3}$$

with s determined as follows:

- s=0 if α is not a root to the characteristic equation.
- s=1 if α is a single root;
- s=2 if α is a repeated root (double root).

Here $A_0, ..., A_n$ are the "undetermined coefficients" that need to be fixed.

- If
$$g(t) = e^{\alpha t} \cos \beta t (a_0 + \dots + a_n t^n)$$
 or $g(t) = e^{\alpha t} \sin \beta t (a_0 + \dots + a_n t^n)$, guess
$$y_p = t^s e^{\alpha t} \cos \beta t (A_0 + \dots + A_n t^n) + t^s e^{\alpha t} \sin \beta t (B_0 + \dots + B_n t^n). \tag{4}$$

with s determined as follows:

- s=0 if $\alpha+i\beta$ is not a root to the characteristic equation.
- s=1 if $\alpha+i\beta$ is a root to the characteristic equation.

Here $A_0, ..., A_n, B_0, ..., B_n$ are the "undetermined coefficients" that need to be fixed.

Then substitute y_p into the equation ay'' + by' + cy = g(t) to find the coefficients.

• Step 3: Write down the solution.

$$y = C_1 y_1 + C_2 y_2 + y_p. (5)$$

- Some remarks.
 - What if g(t) is of neither form? Check whether g(t) can be written as a sum of g_i 's while each g_i falls into one of the two types above, and find y_{pi} for each g_i . y_p is then the sum of all the y_{pi} 's.

For example, if $g(t) = \cos t + t^2 + 3 \sin 2t$. We see that we can set $g_1 = \cos t$, $g_2 = t^2$, $g_3 = 3 \sin 2t$.

Then we can find y_p through:

 $-g_1 = \cos t \Longrightarrow y_{p1} = t^s [A\cos t + B\sin t]$. Find A, B to get y_{p1} .

-
$$g_2 = t^2 \Longrightarrow y_{p2} = t^s [A_0 + A_1 t + A_2 t^2]$$
. Find A_0, A_1, A_2 to get y_{p2} .

$$-g_3 = 3\sin 2t \Longrightarrow y_{p3} = t^s [A\cos 2t + B\sin 2t]$$
. Find A, B to get y_{p3} .

Now $y_p = y_{p1} + y_{p2} + y_{p3}$.

• When $g(t) = e^{\alpha t} \cos \beta t (a_0 + \dots + a_n t^n) + e^{\alpha t} \sin \beta t (b_0 + \dots + b_m t^m)$, the above procedure gives

$$y_{p1} = e^{\alpha t} \cos \beta t \left(A_0 + \dots + A_n t^n \right) + e^{\alpha t} \sin \beta t \left(B_0 + \dots + B_n t^n \right) \tag{6}$$

and

$$y_{p2} = e^{\alpha t} \cos \beta t (A'_0 + \dots + A'_m t^m) + e^{\alpha t} \sin \beta t (B'_0 + \dots + B'_m t^m).$$
 (7)

We see that we can simplify things a little bit by writing directly

$$y_p = e^{\alpha t} \cos \beta t \left(A_0 + \dots + A_k t^k \right) + e^{\alpha t} \sin \beta t \left(B_0 + \dots + B_k t^k \right) \tag{8}$$

and try to find out the coefficients $A_0, ..., A_k, B_0, ..., B_k$. Here $k = \max\{m, n\}$ is the bigger one of m and n. For example if m = 3, n = 2 then k = 3.

Why does this method work? Some explanations.

• Why is the general solution

$$y = C_1 y_1 + C_2 y_2 + y_p? (9)$$

Notice that y is in fact the sum of the general solution for ay'' + by' + cy = 0 and one single solution for ay'' + by' + cy = g(t).

To understand why, think as follows. Consider the equation

$$ay'' + by' + cy = g(t).$$
 (10)

Now let y_p be one solution of this equation. Let's see what equation should $y - y_p$ satisfy. Try

$$a(y - y_p)'' + b(y - y_p)' + c(y - y_p) = ay'' + by' + cy - ay''_p - by'_p - cy_p = g(t) - g(t) = 0.$$
 (11) So

The difference $y - y_p$ satisfies the homogeneous equation!

In other words, any solution y is a sum of y_p and a solution to the homogeneous equation ay'' + by' + cy = 0. But all solutions to this equation can be written as $C_1 y_1 + C_2 y_2$. So the general solution to

$$ay'' + by' + cy = g(t).$$
 (12)

must be

$$y = C_1 y_1 + C_2 y_2 + y_p. (13)$$

Why guess

$$\circ$$
 If $g(t) = e^{\alpha t} (a_0 + \dots + a_n t^n)$, guess

$$y_p = t^s e^{\alpha t} \left(A_0 + \dots + A_n t^n \right). \tag{14}$$

with s determined as follows:

- s=0 if α is not a root to the characteristic equation.
- s=1 if α is a single root;
- s=2 if α is a repeated root (double root).

Here $A_0, ..., A_n$ are the "undetermined coefficients" that need to be fixed.

^{1.} The equation is not given here so we cannot fix s.

Sep. 30, 2011 3

 $\circ \quad \text{If } g(t) = e^{\alpha t} \cos \beta t \left(a_0 + \dots + a_n t^n \right) \text{ or } g(t) = e^{\alpha t} \sin \beta t \left(a_0 + \dots + a_n t^n \right), \text{ guess}$ $y_p = t^s e^{\alpha t} \cos \beta t \left(A_0 + \dots + A_n t^n \right) + t^s e^{\alpha t} \sin \beta t \left(B_0 + \dots + B_n t^n \right). \tag{15}$

with s determined as follows:

- s = 0 if $\alpha + i\beta$ is not a root to the characteristic equation.
- s=1 if $\alpha + i\beta$ is a root to the characteristic equation.

Here $A_0, ..., A_n, B_0, ..., B_n$ are the "undetermined coefficients" that need to be fixed.

It does not have simple explanation. But some understanding can be obtained through the following. Consider the problem

$$ay'' + by' + cy = e^{\alpha t}$$
. (16)

We need one solution y_p , a function, some linear combinations of whose derivatives is $e^{\alpha t}$. But we know that to get $e^{\alpha t}$ through differentiation, basically we have to start from something like $A e^{\alpha t}$. So the guess $y_p = A e^{\alpha t}$.

One more example.

Example 1. Solve

$$y'' + 2y' + 5y = 4e^{-t}\cos 2t. (17)$$

Solution.

• First solve the homogeneous equation

$$y'' + 2y' + 5y = 0 (18)$$

whose characteristic equation is $r^2 + 2r + 5 = 0$. This gives

$$r_{1,2} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 5}}{2} = -1 \pm 2i. \tag{19}$$

So

$$y_1 = e^{-t}\cos 2t$$
, $y_2 = e^{-t}\sin 2t$. (20)

• Next determine the form of y_p . We observe

$$g(t) = 4e^{-t}\cos 2t = e^{\alpha t}\cos \beta t (a_0 + \dots + a_n t^n)$$
(21)

with $\alpha = -1$, $\beta = 2$, n = 0. So

$$y_p = t^s e^{\alpha t} \cos \beta t \left(A_0 + \dots + A_n t^n \right) + t^s e^{\alpha t} \sin \beta t \left(B_0 + \dots + B_n t^n \right). \tag{22}$$

As $\alpha + i\beta = -1 + 2i$ is a solution to the characteristic equation $r^2 + 2r + 5 = 0$, we need to set s = 1. So our guess is

$$y_p = t e^{-t} [A_0 \cos 2t + B_0 \sin 2t]. \tag{23}$$

- Substitute y_p back into the equation.
 - Preparation. We compute

$$y'_{p} = (t e^{-t} [A_{0} \cos 2t + B_{0} \sin 2t])'$$

$$Use (fgh)' = f'gh + fg'h + fgh'$$

$$= e^{-t} (A_{0} \cos 2t + B_{0} \sin 2t) - t e^{-t} (A_{0} \cos 2t + B_{0} \sin 2t)$$

$$+ t e^{-t} (-2 A_{0} \sin 2t + 2 B_{0} \cos 2t)$$

$$= e^{-t} (A_{0} \cos 2t + B_{0} \sin 2t) + t e^{-t} ((2 B_{0} - A_{0}) \cos 2t + (-2 A_{0} - B_{0}) \sin 2t). \tag{24}$$

and

$$y_p'' = [e^{-t} (A_0 \cos 2t + B_0 \sin 2t) + t e^{-t} ((2B_0 - A_0) \cos 2t + (-2A_0 - B_0) \sin 2t)]'$$

$$= [e^{-t} (A_0 \cos 2t + B_0 \sin 2t)]' + [t e^{-t} ((2B_0 - A_0) \cos 2t + (-2A_0 - B_0) \sin 2t)]'$$

$$= -e^{-t} (A_0 \cos 2t + B_0 \sin 2t) + e^{-t} (-2A_0 \sin 2t + 2B_0 \cos 2t)$$

$$+ e^{-t} ((2B_0 - A_0) \cos 2t + (-2A_0 - B_0) \sin 2t)$$

$$- t e^{-t} ((2B_0 - A_0) \cos 2t + (-2A_0 - B_0) \sin 2t)$$

$$+ t e^{-t} [-2(2B_0 - A_0) \sin 2t + 2(-2A_0 - B_0) \cos 2t]$$

$$= (-A_0 + 2B_0 + (2B_0 - A_0)) e^{-t} \cos 2t$$

$$+ (-B_0 - 2A_0 + (-2A_0 - B_0)) e^{-t} \sin 2t$$

$$+ (-(2B_0 - A_0) + 2(-2A_0 - B_0)) t e^{-t} \sin 2t$$

$$+ (-(2A_0 - B_0) - 2(2B_0 - A_0)) t e^{-t} \sin 2t$$

$$= (4B_0 - 2A_0) e^{-t} \cos 2t + (-4A_0 - 2B_0) e^{-t} \sin 2t$$

$$+ (-3A_0 - 4B_0) t e^{-t} \cos 2t + (4A_0 - 3B_0) t e^{-t} \sin 2t.$$

• Substitute into the equation:

$$4e^{-t}\cos 2t = y_p'' + 2y_p' + 5y_p$$

$$= (4B_0 - 2A_0)e^{-t}\cos 2t + (-4A_0 - 2B_0)e^{-t}\sin 2t$$

$$+ (-3A_0 - 4B_0)te^{-t}\cos 2t + (4A_0 - 3B_0)te^{-t}\sin 2t$$

$$+2\{e^{-t}(A_0\cos 2t + B_0\sin 2t) + te^{-t}((2B_0 - A_0)\cos 2t + (-2A_0 - B_0)\sin 2t)\}$$

$$+5te^{-t}[A_0\cos 2t + B_0\sin 2t]$$

$$= (4B_0 - 2A_0 + 2A_0)e^{-t}\cos 2t$$

$$+ (-4A_0 - 2B_0 + 2B_0)e^{-t}\sin 2t$$

$$+ (-3A_0 - 4B_0 + 4B_0 - 2A_0 + 5A_0)te^{-t}\cos 2t$$

$$+ (4A_0 - 3B_0 - 4A_0 - 2B_0 + 5B_0)te^{-t}\sin 2t$$

$$= 4B_0e^{-t}\cos 2t - 4A_0e^{-t}\sin 2t.$$

Therefore

$$B_0 = 1, A_0 = 0 \Longrightarrow y_p = t e^{-t} \sin 2t.$$
 (25)

• Check y_p if time allows:

$$y_p' = e^{-t} \sin 2t - t e^{-t} \sin 2t + 2t e^{-t} \cos 2t; \tag{26}$$

$$y_p'' = -e^{-t}\sin 2t + 2e^{-t}\cos 2t - e^{-t}\sin 2t + te^{-t}\sin 2t - 2te^{-t}\cos 2t + 2e^{-t}\cos 2t - 2te^{-t}\cos 2t - 2t$$

$$y_p'' + 2y_p' + 5y_p = 4e^{-t}\cos 2t - 2e^{-t}\sin 2t - 4te^{-t}\cos 2t - 3te^{-t}\sin 2t + 2e^{-t}\sin 2t - 2te^{-t}\sin 2t + 4te^{-t}\cos 2t + 5te^{-t}\sin 2t = 4e^{-t}\cos 2t.$$
(28)

Hooray...

• Finally write down the general solution

$$y = C_1 e^{-t} \cos 2t + C_2 e^{-t} \sin 2t + t e^{-t} \sin 2t.$$
 (29)

Sorry I should have used this as a homework problem instead of an in-class example...and many thanks to those who helped me during today's lecture...