MATH 334 FALL 2011 HOMEWORK 7

Basic

Problem 1. Determine the radius of convergence for the following:

- a) $\sum_{n=0}^{\infty} n^2 (x-1)^n$.
- b) $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n^2}$.
- c) $\sum_{n=0}^{\infty} \frac{n! \, x^n}{n^n}.$

Problem 2. Calculate the Taylor expansion for the following functions.

- a) $\ln x$, $x_0 = 1$;
- b) e^{x^3} , $x_0 = 0$;
- c) $\frac{1}{1-x}$, $x_0 = 2$.

Problem 3. Rewrie the given expression as a sum whose generic term involves x^n :

- a) $\sum_{n=0}^{\infty} a_n x^{n+2}$;
- b) $(1-x^2)\sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$.

Problem 4. Find the first five nonzero terms in the solution of the problem

$$y'' - xy' - y = 0,$$
 $y(0) = 2,$ $y'(0) = 1.$ (1)

Intermediate

Advanced

Problem 5. Use power series to solve

$$y'' - 2y' + y = 0. (2)$$

CHALLENGE

Problem 6. Consider two power series $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n x^n$ with radii of convergence ρ_1, ρ_2 respectively. We claim that the radius of convergence for the power series $\sum_{n=0}^{\infty} c_n x^n$ corresponding to the ratio $\sum_{n=0}^{\infty} a_n x^n / \sum_{n=0}^{\infty} b_n x^n$ is **at least**

min Distance between 0 and the closest zero of
$$\sum_{n=0}^{\infty} b_n x^n$$
, ρ_1 , ρ_2 . (3)

Construct an example to show that "at least" cannot be dropped.

See Next Page for Answers

Answers

- Problem 1
 - a) 1
 - b) 1/2
 - c) e
- Problem 2

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^n$$
.

b)
$$\sum_{n=0}^{\infty} \frac{x^{3n}}{n!}$$

c)
$$\sum_{n=0}^{\infty} (-1)^{n+1} (x-2)^n$$
.

Problem 3

a)
$$\sum_{n=2}^{\infty} a_{n-2} x^n$$

b)
$$2a_2 + 6a_3x + \sum_{n=2}^{\infty} [(n+2)(n+1)a_{n+2} - n(n-1)a_n]x^n$$

Problem 4
$$y(x) = 2 + x + x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots$$

Problem 5

$$(a_1 - a_0) x e^x + a_0 e^x$$
.