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1. Power series solutions.

1.1. An example.
So far we can effectively solve linear equations (homogeneous and non-homongeneous) with constant

coefficients, but for equations with variable coefficients only special cases are discussed (1st order, etc.).
Now we turn to this latter case and try to find a general method. The idea is to assume that the unknown
function y can be expanded into a power series:

y(x) = a0 + a1 x + a2 x2 +
 (1)

We try to determine the coefficients a0, a1,	
Example 1. Solve

y ′− 2 x y =0. (2)

Solution. Substitute

y(x) = a0 + a1 x + a2 x2 +
 (3)

into the equation. We have
(

a1 + 2 a2 x+ 3 a3 x2 +
 )− 2
(

a0 x+ a1 x2 + a2 x3 + ·
)

= 0. (4)

Rewrite it to

a1 +(2 a2− 2 a0)x +(3 a3− 2 a1)x2 +
 =0. (5)

Naturally we require the coefficients to each power of x to be 0:

a1 = 0 (6)

2 a2− 2 a0 = 0 (7)

3 a3− 2 a1 = 0 (8)� �
We conclude

a1 =0, a2 = a0, a3 =0,	 (9)

We see that the coefficients can be determined one by one.
However, as there are infinitely many ai’s, we need a general formula. To do this, we return to

y(x) = a0 + a1 x + a2 x2 +
 (10)



and write it as

y(x)=
∑

n=0

∞

an xn. (11)

Put this into the equation

y ′− 2x y =0 (12)

we have

0 =

(

∑

n=0

∞

an xn

)′

− 2x

(

∑

n=0

∞

an xn

)

=
∑

n=1

∞

(n an)xn−1−
∑

n=0

∞

2 an xn+1

=
∑

n=0

∞

((n + 1) an+1)xn −
∑

n=1

∞

2 an−1 xn

= a1 +
∑

n=1

∞

[(n + 1) an+1− 2 an−1] x
n. (13)

As a consequence, we have

a1 = 0, an+1 =
2

n + 1
an−1. (14)

From this we clearly see that a2k+1 = 0 for all k. On the other hand,

a2k =
2

2 k
a2k−2 =

1

k
a2k−2 =
 =

1

k!
a0. (15)

Therefore we have

y(x) =
∑

k=0

∞
1

k!
a0 x2k = a0

[

∑

k=0

∞
1

k!
x2k

]

. (16)

Now we recognize that
∑

k=0

∞
1

k!
x2k =

∑

k=0

∞
1

k!

(

x2
)k

= ex2

. (17)

So finally we have

y(x)= a0 ex2

(18)

where a0 can take any value – recall that the general solution to a first order linear equation involves an
arbitrary constant!

From this example we see that the method have the following steps:

1. Write

y(x)=
∑

n=0

∞

an xn. (19)

2. Substitute into the equation and determine an. A recurrence relation – a formula determining an

using ai, i <n – is preferred.

3. Try to sum back and find out a closed form formula for y.

There are several theoretical issues we need to settle.

1. When we substitute y(x)=
∑

an xn into the equation, we write

y ′=
∑

an (xn)
′ (20)

which is equivalent to claiming that it’s OK to differentiate term by term:
(

∑

an xn
)′

=
∑

(an xn)
′ (21)



2. We determine an by settle the coefficients of each xn to 0. In other words, we claim that

∑

n=0

∞

an xn = 0� an = 0 for each n. (22)

3. In practice, it may happen that we cannot “sum back”. Then there are two issues:

a. Check whether a0 + a1 x +
 is indeed a well-defined function.

b. If it is, but we cannot find a closed form formula, can we estimate how well the partial sum
approximates the actual infinite sum? That is, any estimate of

∣

∣

∣

∣

∣

∑

n=0

∞

an xn −
∑

n=0

N

an xn

∣

∣

∣

∣

∣

? (23)

In practice this is very important. For example, if we know that the difference decreases as
3/N3 and the problem requires 2-digit accuracy, we know it suffices to sum up the first 10
terms.

These issues are settled by the theory of power series and analytic functions.

1.2. Power series and analytic functions.
A power series about a point x0 is an expression of the form

∑

n=0

∞

an (x− x0)
n
= a0 + a1 (x− x0)+ a2 (x−x0)

2
+
 (24)

Following our previous discussion, we want to know whether this infinite sum indeed represents a func-
tion, say F (x), or not. If it does, then for any c we would have

F (c)=
∑

n=0

∞

an (c−x0)
n
. (25)

As the RHS is an infinite sum, it should be understood as

F (c)= lim
Nր∞

∑

n=0

N

an (c− x0)
n
. (26)

This motivates the following.

• We say that
∑

n=0
∞

an (x− x0)
n converges at the point x = c if the limit

lim
Nր∞

∑

n=0

N

an (c− x0)
n (27)

exists and is finite.

• If this limit does not exist, we say that the power series diverges at x= c.

Clearly, equations like
∑

n=0

∞

an xn =0 (28)

is only meaningful when the LHS converges. Recall that we would like to justify concluding an = 0 from
this equation. This is fulfilled by the following theorem.

The most important property of power series is the following:

Theorem 2. (Radius of convergence) For any power series
∑

an (x − x0)
n, there is a number ρ ∈ [0,

∞] (meaning: ρ > 0 and can be infinity) such that

• the power series converges for all x such that |x− x0|< ρ;

• the power series diverges for all x such that |x−x0|> ρ.



This particular number ρ is called the radius of convergence.
Remark 3. The number ρ is at least 0, as taking x = x0 gives

∑

0 which is clearly converging to 0; On
the other hand, when the power series is convergent for all x, we say its radius of convergence is infinity,
that is ρ =∞.

Remark 4. Whether the power series converges at x = x0± ρ is tricky to determine. Different approaches
are needed for different power series.

For those who are curious, this theorem is a consequence of the following proposition.

Proposition 5. If the power series
∑

an (x − x0)
n is convergent at x = c, then it is convergent at all x

satisfying

|x−x0|< |c−x0|. (29)

The significance of radius of convergence is that, we can manipulate a power series almost freely inside
|x− x0|< ρ. In particular all our questions are satisfactorily answered.

Theorem 6. (Properties of power series inside |x− x0|< ρ)

• (Power series vanishing on an interval) If

∑

n=0

∞

an (x−x0)
n =0 (30)

for all x in some open interval, then each an is 0.1

• (Differentiation and integration of power series) If the power series
∑

n=0
∞

an (x − x0)
n has

a positive radius of convergence ρ, then if we set f(x) to be the sum inside |x − x0| < ρ, then f is
differentiable and integrable inside this same interval. Furthermore we can perform differentiation
and integration term by term.

f ′(x) =
∑

n=1

∞

n an (x− x0)
n−1 |x− x0|< ρ; (31)

∫

f(x) dx =
∑

n=0

∞
an

n + 1
(x− x0)

n+1 + C |x− x0|< ρ. (32)

• (Multiplication of power series) If
∑

an (x − x0)
n has a positive radius of convergence ρ1 and

∑

bn (x−x0)
n has a positive radius of convergence ρ2, then termwise multiplication

(a0 + a1(x− x0)+
 ) (b0 + b1 (x− x0)+
 )= a0 b0 + [a0 b1 + a1 b0] (x− x0)+
 (33)

is OK for all |x− x0|< ρ where ρ6 min {ρ1, ρ2}.

• (Division of power series) If
∑

an (x − x0)
n has a positive radius of convergence ρ1 and

∑

bn (x − x0)
n has a positive radius of convergence ρ2, and furthermore

∑

bn (x − x0)
n � 0, then for

|x− x0|<min {ρ1, ρ2} one can perform the division

∑

an(x− x0)
n

∑

bn (x−x0)
n =

∑

cn (x−x0)
n

(34)

by solving cn’s through

∑

an(x− x0)
n
=
(

∑

bn (x− x0)
n
)(

∑

cn (x− x0)
n
)

. (35)

1. The idea of “radius of convergence” is not explicit here. But notice that
∑

an (x − x0)
n = 0 implies the convergence

of the infinite sum, and consequently |x− x0|6ρ.



Remark 7. There are many alternative definition of the value of infinite sums which extends the above
properties outside |x − x0| < ρ, that is they give meaning to

∑

an (x − x0)
n for |x − x0| = ρ or even |x −

x0| > ρ. Such techniques have practical values. In particular, in many cases the “sum” (as defined by the
alternative definitions) of

∑

an (x − x0)
n for certain x with |x − x0|> ρ still approximates the value of the

solution.
A few of such alternative summations are Cesaro summation, Abel summation, and Borel summation.

They are parts of the theory of asymptotic analysis.

Example 8. Find a power series expansion for f ′(x), with

f(x)= (1 +x)
−1 =

∑

n=0

∞

(− 1)
n
xn. (36)

Solution. We have

f ′(x) =
∑

n=0

∞
[

(− 1)
n
xn
]′

=
∑

n=1

∞

(− 1)
n
n xn−1 =

∑

n=0

∞

(− 1)
n+1

(n + 1) xn. (37)

Note the change of index range in the 2nd equality. Such “index shifting” will occur every time we try to
solve an equation using power series.

Example 9. Find a power series expansion for g(x) =
∫

0

x
f(t) dt for

f(x)= (1 +x)
−1 =

∑

n=0

∞

(− 1)
n
xn. (38)

Solution. Compute
∫

f(x)=
∑

n=0

∞

(− 1)
n

∫

xn =
∑

n=0

∞
(− 1)

n

n + 1
xn+1 +C. (39)

The constant C is determined through setting x= 0:

C = g(0)= 0. (40)

Therefore

g(x)=
∑

n=0

∞
(− 1)

n

n +1
xn+1, (41)

or if preferred,

g(x)=
∑

n=1

∞
(− 1)

n−1

n
xn. (42)

Example 10. Compute the power series2 for f g with

f = e−x, g =(1+ x)
−1

. (43)

Solution. We first find the power series for f and g.

• f . We know that
(

e−x
)(n)

=(− 1)
n
e−x. (44)

Thus

e−x =
∑

n=0

∞
(− 1)

n

n!
xn. (45)

Note that the radius of convergence is ∞.

• g. We have
(

1

1 +x

)(n)

= (− 1)
n
n!

1

(1+ x)n . (46)

2. When x0 is not specified, it is implicitly set as 0.



Therefore

(1+ x)
−1 =

∑

n=0

∞

(− 1)
n
xn. (47)

The radius of convergence is 1.

Note that the radius of convergence for the power series of the product f g is the smaller of that of f and
g. So in our case here is 1.

Now we compute the product

f g =

[

∑

n=0

∞
(− 1)

n

n!
xn

][

∑

n=0

∞

(− 1)
n
xn

]

=

[

1−x +
x2

2
− x3

6
+
 ][1− x +x2− x3 +
 ]

= 1− 2x +
5

2
x2 +
 (48)

Given that this number ρ is so important, we clearly would like to have a way to compute it. We have
the following theorem.

Theorem 11. (Ratio test) If, for n large, the coefficients an are nonzero and satisfy

lim
n�∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=L (0 6L 6∞) (49)

then the radius of convergence of the power series
∑

n=0
∞

an (x − x0)
n
is ρ = 1/L, with ρ = ∞ if L = 0 and

ρ= 0 if L=∞. That is, the power series converges3 for |x−x0|< ρ and diverges for |x− x0|> ρ.

Remark 12. In other words, if

lim
n�∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=L (0 6L 6∞) (50)

then the power series coincide with a well-defined function for |x− x0|< ρ = 1/L.

Remark 13. Sometimes the limit may not exist. In those cases we need to use the following more gen-
eral formula:

limsup
n�∞

(|an|)1/n = L = ρ−1. (51)

Here limsup is defined as follows:

limsup
n�∞

An = lim
N�∞

[

sup
n>N

An

]

(52)

in which

sup
n>N

An (53)

is the lowest upper bound of the numbers {An}n>N
, or in other words the smallest number that is larger

than all An’s with n >N .

For example, consider An =

{

1+ 1/n n odd
1/n n even

. Then limsupn�∞ An = 1. Note that lim An does not

exist.

Remark 14. Note that, when

lim
n�∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

(54)

3. In fact, absolutely converges.



does not exist, the radius of convergence is not given by

ρ−1 = limsup
n�∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

! (55)

This can be easily seen from the power series

1+ x+ (2 x)
2 + x3 +(2x)

4 +
 . (56)

Example 15. Determine the convergence set for

∑

n=0

∞
2−n

n + 1
(x− 1)

n
. (57)

Solution. We apply the ratio test. Compute

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=
2−(n+1) 1

n +2

2−n 1

n +1

=
n + 1

2 (n + 2)
. (58)

Clearly we have

lim
n�∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=
1

2
. (59)

Thus the radius of convergence is 2 and the power series converges for − 1 < x < 3 and diverges for x <− 1
or x > 3.

How about − 1 and 3? For these points we need to determine in an ad hoc manner.

• x =− 1. We have
∑

n=0

∞
2−n

n + 1
(x− 1)

n =
∑

n=0

∞
2−n

(n + 1)
(− 2)

n =
∑

n=0

∞
(− 1)

n

n + 1
(60)

which is actually converging.4

• x = 3. We have
∑

n=0

∞
2−n

n +1
(x− 1)

n =
∑

n=0

∞
2−n

(n + 1)
2n =

∑

n=0

∞
1

n +1
(61)

which is diverging.5

Remark 16. As we will see soon, when solving ODEs using power series method, it is possible to know
the radius of convergence before actually finding out the coefficients for the expansion of y. This is
important – knowing ρ enables us to estimate how well the partial sum approximates the solution, based
on which we can determine how many coefficients we need to compute.

We have seen that the functions that can be represented by power series have very nice properties.
Let’s give them a name.

Definition 17. (Analytic functions) A function f is said to be analytic at x0 if, in an open interval
about x0, the function is the sum of a power series

∑

n=0
∞

an (x − x0)
n that has positive radius of conver-

gence.

It turns out that this power series is exactly the Taylor expansion of f :

f(x0)+ f ′(x0) (x− x0)+
1

2
f ′′(x0) (x− x0)

2 +
 (62)

4.
∑

an is converging if an and an+1 have different sign for each n, lim an = 0, and |an| is decreasing.

5.
∑

n=0

∞ 1

n + 1
>
∫

1

∞ 1

x

.



with general term
1

n!
f (n)(x0) (x− x0)

n
. (63)

Remark 18. Note that “f is the sum of the power series” cannot be dropped. More specifically, consider
a function f , and suppose that we can expand it into Taylor series at some point x0:

∑

n=0

∞
f (n)(x0)

n!
(x− x0)

n =
∑

an (x− x0)
n (64)

Then, “The series has positive radius of convergence ρ” does not imply “f =
∑

an (x − x0)
n
for |x −

x0|< ρ! A typical example is

f(x)= 1− e
−

1

x
2. (65)

Try computing its Taylor series at x0 =0 and see what happens.

Remark 19. As a consequence of the above remark, it would be very awkward if we have to determine
analyticity of a function through the above definition. Fortunately we have other ways to do this. In par-
ticular, if f , g are analytic at x0, so are c1 f + c2 g, f g, and f/g (when g(x0) � 0) as well as their deriva-
tives and integrals f ′,

∫

f . Typical analytic functions are polynomials, sin x, cos x, ex, and their compos-

ites. Thus we know that sin
(

2 x2 + 1
)

is analytic everywhere, while
e3x+2

sin x
is analytic at every point except

those solving sinx =0.

Remark 20. In the 18th century people believe all reasonable functions (say continuous) are analytic.
This clearly is the belief that fuels the research on power series method. Later in the 19th century it was
discovered that this belief is wrong – most functions do not equal to any good power series. Nevertheless,
the method of power series survived this change and remains a powerful tool in solving ODEs even today.

1.3. More examples.

Now we return to solving equations using power series.

Example 21. Find at least the first four nonzero terms in a power series expansion about x = 0 for a
general solution to

z ′′− x2 z = 0. (66)

Solution. We write

z(x)= a0 + a1 x+
 =
∑

n=0

∞

an xn. (67)

Substituting into the equation, we have

0 = z ′′−x2 z

=
∑

n=2

∞

an n (n− 1)xn−2−
∑

n=0

∞

an xn+2

=
∑

n=0

∞

an+2 (n + 2) (n + 1) xn −
∑

n=2

∞

an−2 xn

= 2 a2 + 6 a3 x+
∑

n=2

∞

[an+2 (n+ 2) (n+ 1)− an−2] x
n. (68)

Thus we have

2 a2 = 0 (69)

6 a3 = 0 (70)

an+2 (n + 2) (n + 1) = an−2� an+2 =
an−2

(n + 2) (n + 1)
. (71)



We conclude:

a2 = 0 (72)

a3 = 0 (73)

a4 =
a0

12
(74)

a5 =
a1

20
(75)

As we only need 4 nonzero terms, we stop here. The solution is

z(x) = a0 + a1 x +
a0

12
x4 +

a1

20
x5 +
 . (76)

Example 22. Find a power series expansion about x = 0 for a general solution to the given differential
equation. Your answer should include a general formula for the coefficients.

y ′′− x y ′+ 4 y = 0. (77)

Solution. We write

y(x)=
∑

n=0

∞

an xn. (78)

Substituting into the equation, we have

0 = y ′′− x y ′+4 y

=
∑

n=2

∞

an n (n− 1) xn−2− x
∑

n=1

∞

n an xn−1 +
∑

n=0

∞

4 an xn

=
∑

n=0

∞

an+2 (n + 2) (n + 1)xn−
∑

n=1

∞

n an xn +
∑

n=0

∞

4 an xn

= (2 a2 + 4 a0)+
∑

n=1

∞

[(n + 2) (n + 1) an+2− (n− 4) an] xn. (79)

This gives

2 a2 + 4 a0 = 0 (80)

(n +2) (n+ 1) an+2− (n− 4) an = 0. (81)

Therefore

a2 = − 2 a0, (82)

an+2 =
n− 4

(n + 2) (n + 1)
an. (83)

It is clear that we should discuss n = 2 k and n = 2 k − 1 separately.
For even n, we have

a2 =− 2 a0, a4 =− 1

6
a2 =

1

3
a0, a6 = 0, a8 =0, a10 = 0,	 (84)

For odd n, we have

a2k+1 =
2 k − 5

(2 k + 1) (2 k)
a2k−1 =

(2 k − 5) (2 k − 7)

(2 k +1)
 (2 k − 2)
a2k−3 =
 =

(2 k − 5)
 (− 3)

(2 k +1)!
a1. (85)

Summarizing, we have

y(x) = a0

[

1− 2 x2 +
1

3
x4

]

+ a1

[

x+
∑

k=1

∞
(2 k − 5)
 (− 3)

(2 k +1)!
x2k+1

]

. (86)

Example 23. Find at least the first four nonzero terms in a power series expansion about x = 0 for the
solution to the given initial value problem.

w ′′+ 3x w ′−w = 0, w(0)= 2, w ′(0)= 0. (87)



Solution. We write

w(x)=
∑

n=0

∞

an xn. (88)

Substituting into the equation, we obtain

0 =
∑

n=2

∞

an n (n− 1) xn−2 + 3x
∑

n=1

∞

n an xn−1−
∑

n=0

∞

an xn

=
∑

n=0

∞

an+2 (n+ 2) (n + 1)xn +
∑

n=1

∞

3 n an xn−
∑

n=0

∞

an xn

= 2 a2− a0 +
∑

n=1

∞

[(n +2) (n +1) an+2 + 3 n an− an] xn. (89)

Therefore

2 a2− a0 = 0 (90)

(n + 2) (n + 1) an+2 + (3 n− 1) an = 0 (91)

which leads to

a2 =
1

2
a0 (92)

an+2 =
1− 3 n

(n + 2) (n + 1)
an. (93)

On the other hand, the initial values give

2= w(0)= a0, 0 = w ′(0)= a1. (94)

Therefore we can compute successively

a2 =
1

2
a0 = 1, (95)

a3 =
− 2

6
a1 =0, (96)

a4 =
− 5

12
a2 =− 5

12
, (97)

a5 =
− 8

20
a3 =0, (98)

a6 =
− 11

30
a4 =

11

72
. (99)

We stop here as only four nonzero terms are required. Finally the answer is

w(x)= 2+ x2− 5

12
x4 +

11

72
x6 +
 . (100)

Remark 24. Note that, there is no way to know a priori how many terms we need to compute before
getting four nonzero terms.

1.4. Ordinary and singular points.

Not all linear ODEs are amenable to the above naïve approach



Equation to Solve:

y ′′+ p(x) y ′+ q(x) y = 0

Ansatz

y =
∑

n=0
∞

an (x− x0)
n

Substitute into

Balancing each power

Tedious calculation

Recurrence Relations
F (n) an = G(n, a0,	 , an−1)

Determine an one by one

Solution y =

Figure 1. Naïve Power Series Method

: Write expansion � Substitute into equation � Determine coefficients.

Example 25. Consider

x2 y ′′+3 y ′− x y = 0. (101)

Solution. Write

y =
∑

n=0

∞

an xn. (102)

Substituting into the equation, we obtain

0 = x2
∑

n=2

∞

an n (n− 1)xn−2 +3
∑

n=1

∞

n an xn−1−
∑

n=0

∞

an xn+1

=
∑

n=2

∞

an n (n− 1) xn +
∑

n=0

∞

3 (n + 1) an+1 xn −
∑

n=1

∞

an−1 xn

= 3 a1 +(6 a2− a0) x+
∑

n=2

∞

[an n (n− 1) +3 (n + 1) an+1− an−1] x
n. (103)

This leads to

3 a1 = 0 (104)

6 a2− a0 = 0 (105)

3 (n +1) an+1 + n (n− 1) an− an−1 = 0, n > 2 (106)

which leads to

a1 =0, a2 =
a0

6
, an+1 =

an−1−n (n− 1) an

3 (n+ 1)
. (107)

Clearly, all coefficients are determined once a0 is given. In other words, the power series solution we
obtain has only one arbitrary constant. As the equation is of second order, this means not all solutions
can be obtained through expansion into power series.



Example 26. Let’s consider the Euler equation

x2 y ′′+ y =0. (108)

Solution. Assume the ansatz

y =
∑

n=0

∞

an xn. (109)

Substitute into the equation:

x2
∑

n=2

∞

an n (n− 1)xn−2 +
∑

n=0

∞

an xn = 0. (110)

This is simplified to

0=
∑

n=2

∞

an n (n− 1)xn +
∑

n=0

∞

an xn = a0 + a1 x +
∑

n=2

∞

[n (n− 1)+ 1] an xn. (111)

The recurrence relations are

a0 = 0 (112)

a1 = 0 (113)

[n (n− 1) +1] an = 0 n > 2 (114)

Clearly we have an = 0 for all n. So the power series method only yield the trivial solution y = 0. In other
words, all the above calculation is a pure waste of time.

Remark 27. We know how to solve the above equation: Guess y = xr to obtain

r (r − 1)+ 1= 0� r1,2 =
1± 3

√
i

2
(115)

which means the general solution is

y =C1 x1/2 cos
(

3
√

ln|x|
)

+ C2 x1/2 sin
(

3
√

ln|x|
)

. (116)

No wonder we cannot obtain any solution using power series!

Checking the difference between this example and the previous ones, we reach the following definition.

Definition 28. (Ordinary and singular points) Consider the linear differential equation in the stan-
dard form

y ′′+ p(x) y ′ + q(x) y =0. (117)

A point x0 is called an ordinary point if both p, q are analytic at x0. If x0 is not an ordinary point, it is
called a singular point of the equation.

Example 29. Find the singular points of the equation we just discussed.

x2 y ′′+3 y ′− x y = 0. (118)

Solution. First write it into the standard form

y ′′+
3

x2
y ′− 1

x
y = 0. (119)

We have

p(x) =
3

x2
, q(x)=− 1

x
. (120)

As 3, 1, x2 and x are all analytic everywhere, their ratios are analytic at all points except those making the
denominator vanish.

Therefore the only singular point is x =0.



Remark 30. When x0 is an ordinary point, we expect no trouble finding the general solution by setting

y(x)=
∑

n=0

∞

an (x−x0)
n
. (121)

In other words, when x0 is an ordinary point, all solutions can be expanded into the above form.

When x0 is singular, however, in general not all solutions can be represented in the above form, as we
have seen in the example.

Remark 31. It turns out that, when x0 is singular, there are still two cases.

• If p(x) (x− x0), q(x) (x− x0)
2 are analytic, then the solution can be solved via a generalized version

of the series method; Such x0 is called regular singular.

• In all other cases, x0 is called irregular singular and there is no universally good way of solving
the equation.

2. Equations with analytic coefficients.

The following theorem summarizes the good properties of ordinary points.

Theorem 32. (Existence of analytic solutions) Suppose x0 is an ordinary point for equation

y ′′(x)+ p(x) y ′(x)+ q(x) y(x)= 0, (122)

then it has two linearly independent analytic solutions of the form

y(x)=
∑

n=0

∞

an (x−x0)
n
. (123)

Moreover, the radius of convergence of any power series solution of the form given above is at least as
large as the distance from x0 to the nearest singular point (real or complex-valued).

Remark 33. It is important, when determining the radius of convergence, to remember count in complex
singular points.

Remark 34. Recall that, for many problems, we could not write down an explicit formula for the coeffi-
cients an, but can only compute a few terms. For example, when considering

w ′′+ 3x w ′−w = 0, w(0) =2, w ′(0)= 0. (124)

we obtain

w(x)= 2+ x2− 5

12
x4 +

11

72
x6 +
 . (125)

With the help of this theorem, we can estiamte how good the first few terms approximates w(x), that is
we can estimate the size of

w(x)−
(

2+ x2− 5

12
x4 +

11

72
x6

)

. (126)

Example 35. Find a minimum value for the radius of convergence of a power series solution about x0.

(x+ 1) y ′′− 3 x y ′+ 2 y = 0, x0 = 1. (127)

Solution. Write the equation to standard form

y ′′− 3x

x + 1
y ′+

2

x+ 1
y =0. (128)

The only singular point is x = − 1. Thus the minimum radius of convergence is the distance between x0 =
1 and − 1, which is 2.



Example 36. Find a minimum value for the radius of convergence of a power series solution about x0.
(

1+ x+ x2
)

y ′′− 3 y = 0; x0 =1. (129)

Solution. Write the equation to standard form

y ′′− 3

1+ x +x2
y = 0. (130)

The singular points are roots of 1+ x +x2, which are

x1,2 =
− 1± 3

√
i

2
. (131)

To find out the closest singular point to x0, we compute

|x1−x0|=
∣

∣

∣

∣

∣

− 3

2
+

3
√

2
i

∣

∣

∣

∣

∣

= 3
√

; |x2− x0|= 3
√

. (132)

So both are 3
√

away from x0. As a consequence, the minimum radius of convergence is 3
√

.

Example 37. Find at least the first four nonzero terms in a power series expansion about x0 for a gen-
eral solution to the given differential equation with the given value of x0.

(

x2− 2 x
)

y ′′ +2 y =0, x0 = 1. (133)

Solution. The best way to do this is to first shift x0 to 0. To do this, let t = x − 1. Then t0 = x0 − 1 = 0,
x2− 2x = t2− 1, and the equation becomes

(

t2− 1
)

y ′′+ 2 y = 0 (134)

and we would like to expand at t0 = 0.

Substituting

y =
∑

n=0

∞

an tn (135)

into the equation, we have

0 =
(

t2− 1
)

∑

n=2

∞

an n (n− 1) tn−2 + 2
∑

n=0

∞

an tn

=
∑

n=2

∞

an n (n− 1) tn −
∑

n=2

∞

an n (n− 1) tn−2 +
∑

n=0

∞

2 an tn

=
∑

n=2

∞

an n (n− 1) tn −
∑

n=0

∞

an+2 (n +2) (n +1) tn +
∑

n=0

∞

2 an tn

= (− 2 a2 +2 a0) + (− 6 a3 + 2 a1) t +
∑

n=2

∞

[an n (n− 1)− an+2 (n + 2) (n + 1) +2 an] tn. (136)

This leads to

− 2 a2 + 2 a0 = 0 (137)

− 6 a3 + 2 a1 = 0 (138)

an n (n− 1)− an+2 (n +2) (n +1)+ 2 an = 0. (139)

As only four terms are needed, all we need to settle is

a2 = a0, a3 =
1

3
a1. (140)

Thus

y(t)= a0 + a1 t + a0 t2 +
1

3
a1 t3 +
 (141)



Back to the x variable, we have

y(x)= a0

[

1 + (x− 1)
2
+
 ]+ a1

[

(x− 1)+
1

3
(x− 1)

3
+
 ]. (142)

Example 38. Find at least the first four nonzero terms in a power series expansion of the solution to the
given initial value problem.

y ′′− (sin x) y = 0, y(π)= 1, y ′(π) =0. (143)

Solution. As the initial values are given at π, the expansion should be about x0 = π. First introduce new
variable t = x− π. Then x= t + π and the equation becomes

y ′′+ (sin t) y = 0, y(0) =1, y ′(0)= 0. (144)

Now write

y(t)=
∑

n=0

∞

an tn (145)

and substitute into the equation, recalling

sin t =
∑

n=0

∞
(− 1)

n

(2n + 1)!
t2n+1, (146)

we reach

0 = y ′′+ (sin t) y

=
∑

n=2

∞

an n (n− 1) tn−2 +

(

t− 1

3!
t3 +
 )(a0 + a1 t + a2 t2 + a3 t3 +
 )

= 2 a2 + 6 a3 t + 12 a4 t2 + 20 a5 t3 +

+ a0 t + a1 t2 +

(

a2− a0

6

)

t3 +

= 2 a2 + (6 a3 + a0) t +(12 a4 + a1) t2 +

(

20 a5 + a2− a0

6

)

t3 +
 (147)

This gives

2 a2 = 0 (148)

6 a3 + a0 = 0 (149)

12 a4 + a1 = 0 (150)

20 a5 + a2− a0

6
= 0 (151)

Applying the initial values we have

a0 = 1, a1 = 0. (152)

Thus the above leads to

a0 = 1, a1 = 0, a2 =0, a3 =− 1

6
, a4 =0, a5 =

1

120
. (153)

Only three of them are non-zero. We have to return to the equation and expand to higher orders.

0 = y ′′+ (sin t) y

=
∑

n=2

∞

an n (n− 1) tn−2 +

(

t− 1

3!
t3 +

1

5!
t5 +
 )(a0 + a1 t + a2 t2 + a3 t3 + a4 t4
 )

= 2 a2 +6 a3 t + 12 a4 t2 + 20 a5 t3 + 30 a6 t4 +

a0 t + a1 t2 +

(

a2− a0

6

)

t3 +
(

a3− a1

6

)

t4 +
 (154)

which gives

30 a6 + a3− a1

6
=0 (155)



from balancing the t4 term. As a1 =0, a3 =− 1/6, we have

a6 =
1

180
. (156)

As a6� 0, we already have 4 nonzero terms and do not need to go to higher orders. The solution in t vari-
able is

y(t) =1− 1

6
t3 +

1

120
t5 +

1

180
t6 +
 (157)

Returning to the x-variable, we have

y(x) =1− 1

6
(x− π)

3 +
1

120
(x− π)

5 +
1

180
(x− π)

6 +
 (158)

There is no difficulty extending the power series method to non-homogeneous problems.

Remark 39. When p(x) or q(x) has a power series expansion involving more than a few terms (as in the
above example, q(x) = − sin x and its expansion at 1 involves infinitely many terms), in general it is not
easy to write down the general formula for the coefficients of xn in the product. Thus we encounter the
following question: When computing

p(x) y ′ or q(x) y, (159)

how many terms should we keep in the expansion of p, q, y?

Let’s revisit the situation in the last example. We need to get the first few terms of

(

t− 1

3!
t3 +
 )(a0 + a1 t + a2 t2 + a3 t3 +
 ). (160)

and later we see that expanding to t3 is not enough.

Unfortunately there is no general rule of deciding how many terms we should keep. Nevertheless, there
are simple rules that may make the “trial and error” procedure more efficient.

1. Look at the whole equation.

∑

n=2

∞

an n (n− 1) tn−2 +

(

t− 1

3!
t3 +

1

5!
t5 +
 )(a0 + a1 t + a2 t2 + a3 t3 + a4 t4
 ) (161)

We know that the constant term would give us a2, the t term would give us a3, the t2 term would
give us a4, and so on.

As we need to get the “first four nonzero terms” of y, we have to at least compute a0, a1, a2, a3.
Thus the expansion has to be at least up to t;

Now study the problem a bit more carefully, we see that the initial condition y ′(π) = 0 leads to
a1 = 0. As a consequence, to get four nonzero terms, we have to compute at least up to a4. As a
consequence, we need to expand at least up to the term t2.

2. Consider two power series
∑

n=0

∞

pn xn,
∑

n=0

∞

qn xn. (162)

Suppose we need to compute their product:

(

p0 + p1 x + p2 x2 +
 )(q0 + q1 x+ q2 x2 +
 ) (163)

up to at least the power xm. Then how many terms in each expansion should we keep? The answer
is exactly m. For example, if we want to get the correct coefficient for x3 in the above product,
then writing the product as

(

p0 + p1 x + p2 x2 +
 )(q0 + q1 x+ q2 x2 +
 ) (164)



is not enough! We need to write each power series to the x3 term:

(

p0 + p1 x + p2 x2 + p3 x3 +
 )( q0 + q1 x + q2 x2 + q3 x3 +
 ) (165)

and the coefficients for 1, x, x2, x3 are exactly the coefficients for 1, x, x2, x3 in the product

(

p0 + p1 x + p2 x2 + p3 x3
)(

q0 + q1 x + q2 x2 + q3 x3
)

. (166)

3. Suppose writing each power series up to x3 is not enough, and we try to compute further the coeffi-
cient of x4. That is the coefficient of x4 in the product

(

p0 + p1 x + p2 x2 + p3 x3 + p4 x4
)(

q0 + q1 x+ q2 x2 + q3 x3 + q4 x4
)

. (167)

The good news is that, we do not need to re-compute the 1, x, x2, x3 term. All we need to do is to
focus on the terms in the two sums that will give us x4: p0 · q4 x4, p1 x · q3 x3, and so on.

Applying the above understanding to the last example. We see that the most optimal guess is that it’s
sufficient to compute

(t +
 )
(

a0 + a1 t + a2 t2 +
 ) (168)

that is expanding each up to t2. Of course after some algebra we find out that this is not enough, as a2 =
a4 = 0. So expanding up to t2 we only obtain two nonzero coefficients: a0, a3. To get four, we need to
expand at least two more terms, that is up to t4. It turns out that this is enough.

Example 40. Find at least the first four nonzero terms in a power series expansion about x = 0 of a gen-
eral solution to the given differential equation.

y ′′−x y ′+ 2 y = cos x. (169)

Solution. Write

y(x)=
∑

n=0

∞

an xn (170)

and substitute into the equation, recalling

cosx =
∑

n=0

∞
(− 1)

n

(2n)!
x2n, (171)

we have

∑

n=0

∞
(− 1)

n

(2 n)!
x2n = cos x = y ′′− x y ′+2 y

=
∑

n=2

∞

an n (n− 1)xn−2−
∑

n=1

∞

n an xn +
∑

n=0

∞

2 an xn

=
∑

n=0

∞

an+2 (n +2) (n+ 1)xn −
∑

n=1

∞

n an xn +
∑

n=0

∞

2 an xn

= (2 a2 + 2 a0)+
∑

n=1

∞

[an+2 (n + 2) (n + 1)−nan +2 an] xn. (172)

The first few terms of balance is then:

x0: 1= 2 a2 + 2 a0 (173)

x1: 0= 6 a3 + a1 (174)

x2:
1

2
= 12 a4 (175)

From these we have

a2 =
1

2
− a0, a3 =− 1

6
a1. (176)



So the solution is

y(x) = a0 + a1 x+

(

1

2
− a0

)

x2− 1

6
a1 x3 +


=

(

1

2
x2 +
 )+ a0

(

1− x2 +
 )+ a1

(

x− 1

6
x3 +
 ). (177)

Remark 41. From the above we can conlude that the expansions of yp, y1, y2 are

yp(x) =
1

2
x2 +
 (178)

y1(x) = 1− x2 +
 (179)

y2(x) = x− 1

6
x3 +
 (180)

(Don’t forget that the choices of yp, y1, y2 are not unique!)

Remark 42. The power series method is equivalent to the following idea of solving linear ODEs. Con-
sider a second order ODE

y ′′+ p(x) y ′+ q(x) y = 0, y(x0)= a0, y ′(x0)= a1. (181)

Then setting x= x0 in the equation, we get

y ′′(x0)=− p(x0) y ′(x0)− q(x0) y(x0)=− p(x0) a1− q(x0) a0. (182)

To determine y ′′′, we differentiate the equation:

y ′′′+ p y ′′+(p′+ q) y ′+ q ′ y = 0. (183)

Now setting x = x0 we obtain y ′′′(x0). Differentiating once more we get y(4)(x0) at so on. After obtaining
all derivatives of y at x0, we can obtain y through Taylor expansion:

y = y(x0) + y ′(x0) (x−x0) +
 . (184)

This approach has theoretical advantage and can be used to prove the existence and uniqueness of solu-
tions to ODEs when everything is analytic6. On the other hand, simply writing y = a0 + a1 (x − x0) + 

and substitute into the equation is in practice much easier to do.

3. Dealing with Singular Points.
In the above we have seen that, using power series about an ordinary point, we can easily obtain the

power series representations for the general solution. On the other hand, if we expand about a singular
point, not all solutions can be obtained through power series.

Remark 43. (Why bother?) Why should we try to solve the equation around singular points? If we
want to know what happens around a singular point, why couldn’t we just pick a regular point nearby,
find the solution, and then study the solution near the singular point? Afterall, this solution around the
regular point should converge for points near the singular point.

Unfortunately, the above strategy will not give us what we want. Because as x approaches the singular
point, the convergence of the power series (obtained by solving the equation at a nearby regular point)
becomes worse and worse. And letting x approach the singular point would not give us useful information.

3.1. Motivation.
A typical equation with singular point is the Cauchy-Euler equation

a x2 y ′′(x)+ b x y ′(x)+ c y(x)= 0, x > 0 (185)

where a, b, c are constants. We have studied this equation before, the conclusions are

• To find the solutions, we need to consider the associated characteristic, or indicial, equation

a r2 + (b− a) r + c = 0 (186)

6. So it’s a special case of the so-called Caucky-Kowalevskaya theorem in PDE.



which can be obtained by substituting y = xr into the equation.

• There are three cases.

1. The characteristic equation has two distinct real roots r1, r2. Then the general solution is
given by

y = c1 xr1 + c2 xr2. (187)

2. The characteristic equation has one double root r = r0. Then

y = c1 xr0 + c2 xr0 lnx. (188)

3. The characteristic equation has two complex roots α± i β. Then

y = c1 xα cos(β ln x)+ c2 xα sin(β ln x). (189)

From these we clearly see that, unless r1, r2 are both non-negative integers, there is no way that we can
solve the equation by setting

y(x)=
∑

n=0

∞

an xn, (190)

since none of the solutions would be analytic around 0.
We also observe that in case 2, the second linearly independent solution, xr0 ln x, can be obtained for-

mally from the first one by differentiating with respect to r:

xr0 lnx= (lnx) er0ln x =
∂

∂r

[

erln x
] N r=r0

=
∂

∂r
(xr) N r=r0

. (191)

To understand why this would work, recall that

a (xr)
′′+ b (xr)

′+ c xr =
[

a r2 +(b− a) r + c
]

xr (192)

When the characteristic equation has a double root r0, the above becomes

a (xr)
′′+ b (xr)

′+ c xr = a (r − r0)
2
xr. (193)

Now differentiating both sides with respect to r, we have

a (xr lnx)
′′+ b (xr lnx)

′+ c (xr lnx)=2 a (r − r0) xr + a (r − r0)
2
xr lnx. (194)

Setting r = r0, we see that xr0 lnx is indeed a solution.
Finally note that, case 3 and case 1 can be unified if we consider complex variables. Since

xα cos(β ln x) and xα sin(β lnx). (195)

are simply the real and imaginary parts of xα+iβ.
The above observations play important roles in the so-called Method of Frobenius for solving problems

at singular points using power series.

3.2. The Method of Frobenius.
First we check what goes wrong when we try to solve the Cauchy-Euler equations. There are two situ-

ations.

• The first and the 3rd cases. Unless both r1, r2 are integers, the powers

xr1, xr2 (196)

cannot be represented by a power series. However, we notice that they can be represented by

xr
∑

an xn (197)

where r is allowed to be any complex number. When r1, r2 are complex, r1,2 = α ± i β, we can
replace xr1, xr2 by

xα cos(β lnx), xα sin(β lnx). (198)



• The 2nd case. Here a ln x term is involved which prevents representation even in the above modi-
fied form. However, we notice that xr ln x can be obtained through differentiating the first solution
xr. Also note that, the first solution xr is covered by the ansatz

xr
∑

an xn. (199)

The method of Frobenius is a modification to the power series method guided by the above observation.
This method is effective at regular singular points. The basic idea is to look for solutions of the form

(x− x0)
r
∑

n=0

∞

an (x− x0)
n
. (200)

Consider the equation

y ′′+ p(x) y ′ + q(x) y =0. (201)

Let x0 be a regular singular point. That is

p(x) (x− x0)=
∑

n=0

∞

pn (x− x0)
n
, q(x) (x− x0)

2
=
∑

n=0

∞

qn (x− x0)
n

(202)

with certain radii of convergence.

To make the following discussion easier to read, we assume x0 =0.

Substitute the expansion

y =xr
∑

n=0

∞

an xn (203)

into the equation we get

(

xr
∑

n=0

∞

an xn

)′′

+ p(x)

(

xr
∑

n=0

∞

an xn

)′

+ q(x) xr
∑

n=0

∞

an xn =0. (204)

Now compute
(

xr
∑

n=0

∞

an xn

)′′

=

(

∑

n=0

∞

an xn+r

)′′

=
∑

n=0

∞

(n + r) (n + r − 1) an xn+r−2. (205)

p(x)

(

xr
∑

n=0

∞

an xn

)′

= p(x)

(

∑

n=0

∞

an xn+r

)′

= p(x)

(

∑

n=0

∞

(n + r) an xn+r−1

)

= (p(x) x)

(

∑

n=0

∞

(n+ r) an xn+r−2

)

=

(

∑

n=0

∞

pn xn

)(

∑

n=0

∞

(n + r) an xn+r−2

)

=
∑

n=0

∞
{

∑

m=0

n

pn−m (m + r) am

}

xn+r−2. (206)

q(x) xr
∑

n=0

∞

an xn = xr−2

(

∑

n=0

∞

qn xn

)(

∑

n=0

∞

an xn

)

=
∑

n=0

∞
[

∑

m=0

n

qn−m am

]

xn+r−2. (207)



Now the equation becomes

∑

n=0

∞
{

(n + r) (n+ r − 1) an +
∑

m=0

n

[(m + r) pn−m + qn−m] am

}

xn+r−2 = 0. (208)

Or equivalently

∑

n=0

∞
{

[(n + r) (n + r − 1)+ (n + r) p0 + q0] an +
∑

m=0

n−1

[(m + r) pn−m + qn−m] am

}

xn+r−2 = 0. (209)

This leads to the following equations:

(n = 0): [r (r − 1)+ p0 r + q0] a0 = 0, (210)

(n > 1): [(n + r) (n + r − 1)+ (n + r) p0 + q0] an +
∑

m=0

n−1

[(m + r) pn−m + qn−m] am = 0. (211)

The n = 0 equation is singled out because if we require a0 � 0 (which is natural as when a0 = 0, we have
y = xr+1

∑

m=0
∞

bm xm where bm = am+1.), then it becomes a condition on r:

r (r − 1) + p0 r + q0 = 0. (212)

This is called the indicial equation and will provide us with two roots r1, r2 (Some complicated situation
may arise, we will discuss them later). These two roots are called exponents of the regular singular point
x= 0. After deciding r, the n > 1 relations provide us with a way to determine an one by one.

Remark 44. Recall that p(x) x =
∑

n=0
∞

pn xn, q(x) x2 =
∑

n=0
∞

qn xn. Now consider the case when x = 0
is regular. In this case we have p0 = q0 = 0. And the indicial equation gives r1 = 0 and r2 = 0. So we expect
two linearly independent solutions y1 = a0 + 
 and y2 = a1 x + 
 . This is indeed what we obtained when
solving equations at regular points!

It turns out that there are three cases: r1 � r2 with r1− r2 not an integer; r1 = r2; r1 − r2 is an integer.
Before we discuss these cases in a bit more detail, let’s state the following theorem which summarizes the
method of Frobenius in its full glory.

Theorem 45. Consider the equation

y ′′+ p(x) y ′+ q(x) y = 0 (213)

at an regular singular point x0. Let ρ be no bigger than the radius of convergence of either (x − x0) p or

(x− x0)
2
q. Let r1, r2 solve the indicial equation

r (r − 1) + p0 r + q0 = 0. (214)

Then

1. If r1� r2 and r1− r2 is not an integer, then the two linearly independent solutions are given by

y1(x)= |x− x0|r1
∑

n=0

∞

an (x− x0)
n
, y2(x)= |x− x0|r2

∑

n=0

∞

ān (x− x0)
n
. (215)

The coefficients an and ān should be determined through the recursive relation

[(n + r) (n + r − 1)+ (n + r) p0 + q0] an +
∑

m=0

n−1

[(m + r) pn−m + qn−m] am = 0. (216)

2. If r1 = r2, then y1 is given by the same formula as above, and y2 is of the form

y2(x)= y1(x) ln|x− x0|+ |x− x0|r1
∑

n=1

∞

dn (x− x0)
n
. (217)



3. If r1 − r2 is an integer, then take r1 to be the larger root (More precisely, when r1, r2 are both com-
plex, take r1 to be the one with larger real part, that is Re(r1) > Re(r2)). Then y1 is still the same,
while

y2(x)= c y1(x) ln|x− x0|+ |x−x0|r2

∑

n=0

∞

en (x− x0)
n
. (218)

Note that c may be 0.

All the solutions constructed above converge at least for 0 < |x − x0| < ρ (Remember that x0 is a singular
point, so we cannot expect convergence there).

Remark 46. Note that, although ρ is given by radii of convergence of (x − x0) p and (x − x0)
2
q, in prac-

tice, it is the same as the distance from x0 to the nearest singular point of p and q – no (x − x0) factor
needed.

Now we discuss these cases in more detail.

Case 1: r1 − r2 is not an integer.
This case is the simplest. We work through an example.

Example 47. Solve

x2 y ′′+ x

(

x− 1

2

)

y ′+
1

2
y =0 (219)

at x0 = 0.
Solution. We first write it into the standard form

y ′′+
(x− 1/2)

x
y ′+

1

2 x2
y =0. (220)

Thus p(x) =
x − 1/2

x
and q(x) =

1

2 x2
. It is clear that x p(x) and x2 q(x) are analytic so 0 is a regular sin-

gular point, and the method of Frobenius applies.
Now we write

y =
∑

n=0

∞

an xn+r. (221)

Substitute into the equation, we have
(

∑

n=0

∞

an xn+r

)′′

+
x− 1/2

x

(

∑

n=0

∞

an xn+r

)′

+
1

2 x2

∑

n=0

∞

an xn+r = 0. (222)

As p and q are particularly simple, we write the equation as
(

∑

n=0

∞

an xn+r

)′′

+

(

∑

n=0

∞

an xn+r

)′

− 1

2 x

(

∑

n=0

∞

an xn+r

)′

+
1

2 x2

∑

n=0

∞

an xn+r = 0. (223)

Carrying out the differentiation, we reach

∑

n=0

∞

(n + r) (n + r − 1) an xn+r−2 +
∑

n=0

∞

(n + r) an xn+r−1 − 1

2

∑

n=0

∞

(n + r) an xn+r−2 +
∑

n=0

∞
an

2
xn+r−2 =

0. (224)

Shifting index:
∑

n=0

∞

(n+ r) an xn+r−1 =
∑

n=1

∞

(n + r − 1) an−1 xn+r−2. (225)

Now the equation becomes
[

r (r − 1) − r

2
+

1

2

]

a0 xr−2 +
∑

n=1

∞ {[

(n + r) (n + r − 1) − 1

2
(n + r) +

1

2

]

an + (n + r − 1) an−1

}

xn+r−2 =

0. (226)



The indicial equation is

r (r − 1)− r

2
+

1

2
= 0� r1 =1, r2 =

1

2
. (227)

Their difference is not an integer.
To find y1 we set r = r1 =1. The recurrence relation

[

(n + r) (n + r − 1)− 1

2
(n + r) +

1

2

]

an +(n + r − 1) an−1 = 0 (228)

becomes
[

n (n + 1)− 1

2
(n + 1)+

1

2

]

an + n an−1 =0 (229)

which simplifies to

an =− 2

2 n + 1
an−1. (230)

This gives

an =(− 1)
n 2n

(2 n +1) (2n− 1)
 3
a0. (231)

Setting a0 =1 we obtain

y1(x)= |x|
∑

n=0

∞

(− 1)
n 2n

(2 n+ 1) (2 n− 1)
 3
xn. (232)

To find y2 we set r = r2 =1/2. The recurrence relation becomes

an =− 1

n
an−1� an = (− 1)

n 1

n!
a0 (233)

so

y2(x) = |x|1/2
∑

n=0

∞

(− 1)
n 1

n!
xn = |x|1/2

e−x. (234)

Finall the general solution is

y(x)= C1 |x|
∑

n=0

∞

(− 1)
n 2n

(2n + 1) (2 n− 1)
 3
xn + C2 |x|1/2 e−x. (235)

Remark 48. Of course, for anyone who can remember the formulas, there is no need to do all these dif-
ferentiation and index-shifting.

Case 2: r1 = r2.
In this case it is clear that y1(x) can be obtained without any difficulty. The problem is how to obtain

y2(x). The idea is to differentiate y1(x) with respect to r. To see why this would work, we need to study
the dependence of y on r very carefully.

Recall that, when we substitute y by the expansion xr
∑

an xn the equation becomes

∑

n=0

∞
{

[(n + r) (n + r − 1)+ (n + r) p0 + q0] an +
∑

m=0

n−1

[(m + r) pn−m + qn−m] am

}

xn+r−2 = 0. (236)

Now we keep the r dependence, set a0 =1, and solve an through the recurrence relation

[(n + r) (n + r − 1) + (n + r) p0 + q0] an +
∑

m=0

n−1

[(m + r) pn−m + qn−m] am =0 (237)

for n = 1, 2, 3,	 . As a consequence, we obtain an as functions of r: Denote them by an(r). Now define

y(x; r)= xr

[

1 +
∑

n=1

∞

an(r)xn

]

. (238)

We have

y ′′+ p(x) y ′+ q(x) y = [r (r − 1)+ p0 r + q0] x
r−2. (239)



As we are in the case r1 = r2, this can be further written as

y ′′+ p(x) y ′+ q(x) y = (r − r1)
2
xr−2. (240)

Now taking partial derivative with respect to r of both sides, we reach

(

∂y

∂r

)′′

+ p(x)

(

∂y

∂r

)′

+ q(x)
∂y

∂r
= 2 (r − r1)xr−2 +(r − r1)

2
xr−2 ln|x|. (241)

It is now clear that

y2 =
∂y

∂r
N r=r1

(242)

is a solution. As

y(x; r)= xr

[

1 +
∑

n=1

∞

an(r)xn

]

, (243)

taking r derivative we obtain

∂y

∂r
= ln|x|xr

[

1 +
∑

n=1

∞

an(r)xn

]

+ xr
∑

n=1

∞

an
′ (r) xn. (244)

consequently

y2(x)= y1(x) ln|x|+ xr
∑

n=1

∞

dn xn (245)

with

dn = an
′ (r1). (246)

Let’s work on an example.

Example 49. Solve (at x0 =0)

x (1−x) y ′′ +(1− x) y ′− y = 0. (247)

Solution. The standard form is

y ′′+
1

x
y ′− 1

x (1− x)
y =0. (248)

It is easy to check that 0 is a regular singular point. We have

p(x)x =1� p0 = 1, pn =0 for all n > 1; (249)

q(x)x2 =− x

1− x
=− x

(

∑

n=0

∞

xn

)

=−
∑

n=1

∞

xn� q0 = 0, qn =− 1 for all n > 1. (250)

The indicial equation is

r (r − 1) + p0 r + q0 = 0� r (r − 1)+ r =0� r1 = r2 = 0. (251)

For y1 one can easily compute

an =
(n + r − 1)

2 +1

(n + r)2
an−1 (252)

which gives

y1(x)= 1+
∑

n=1

∞ 1 · 2 · 5
((n− 1)
2 + 1

)

(n!)2
xn. (253)

To find out y2 we need to keep the r dependence:

an =

(

r2 + 1
)

(

(r + 1)
2
+ 1
)
((r +n− 1)

2
+ 1
)

(r + 1)2 (r + 2)2
 (r + m)2
a0. (254)



The best way to compute an
′ is to take logarithm first:

an
′

an
=(ln an)

′=
∑

k=1

n
[

2 (r + k − 1)

(r + k − 1)2 +1
− 2

r + k

]

. (255)

Setting r = r1 =0, we get

dn = an
′ = 2 an N r=0

∑

k=1

n
k − 2

k
(

(k − 1)2 + 1
) = 2

1 · 2 · 5
((n− 1)
2
+ 1
)

(n!)2

∑

k=1

n
k − 2

k
(

(k − 1)2 + 1
). (256)

So the second solution is

y2(x)= y1(x) ln|x|+2
∑

n=1

∞







1 · 2 · 5
((n− 1)
2 + 1

)

(n!)2

∑

k=1

n
k − 2

k
(

(k − 1)2 +1
)





xn (257)

and the general solution is given by

y = C1 y1 +C2 y2. (258)

Finally we discuss radius of convergence, that is in which interval is the above solution correct.
Recall that

x p= 1, x2 q =− x

1− x
, (259)

we see that there is no singular point for x p, but x2 q becomes singular at x = 1. The lower bound for the
radius of convergence is then |1− 0|= 1. As a consequence, our solutions are valid at least for |x|< 1.

Remark 50. Instead of using the above approach, one can also assume

y2 = y1 ln|x|+ |x|r1
∑

n=1

∞

dn xn, (260)

substitute into the equation, and try to determine dn. As the existence of a solution of the above form is
guaranteed, dn can always be determined one by one.

Case 3: r1 − r2 is a non-zero integer.
This is the most complicated case. First let us spend some time understand why r1 − r2 being an

integer is a problem. Recall the indicial equation and the recurrence relation:

(n = 0): [r (r − 1)+ p0 r + q0] a0 = 0, (261)

(n > 1): [(n + r) (n + r − 1)+ (n + r) p0 + q0] an +
∑

m=0

n−1

[(m + r) pn−m + qn−m] am = 0. (262)

We note that, to be able to determine an uniquely, we need

(n + r) (n + r − 1)+ (n + r) p0 + q0� 0. (263)

This is exactly the same as n + r is not a solution to the indicial equation. Therefore, when r1 − r2

is an integer, if we choose r1 to be the one with bigger real part, and set r = r1, then we will have no diffi-
culty determining an one by one; However, if we set r = r2, the root with smaller real part, the coefficient
of an0

would disappear, where n0 is such that r1− r2 = n0, thus making determination of an0
not possible.

Summarizing, when r1 − r2 is a positive integer, setting r = r1 and calculating an one by one would
give us the first solution

y1(x)= xr1

∑

an xn (264)

but setting r = r2 will not give us the linearly independent second solution. We have to find other ways.

Remark 51. (Treating regular points as singular) It is interesting to notice the following. Consider
the case 0 is a regular point of

y ′′+ p(x) y ′ + q(x) y =0. (265)



Now note that 0 also satisfies the definition of regular singular points. Let’s pretend we didn’t recognize
that it is regular, and set

y = xr
∑

n=0

∞

an xn =
∑

n=0

∞

an xn+r. (266)

The recurrence relations are then

(n = 0): [r (r − 1)+ p0 r + q0] a0 = 0, (267)

(n > 1): [(n + r) (n + r − 1)+ (n + r) p0 + q0] an +
∑

m=0

n−1

[(m + r) pn−m + qn−m] am = 0. (268)

Now recall that pn, qn are from expansions of x p and x2 q. As p, q themselves are analytic, we have p0 =
q0 = q1 = 0.

The indicial equation now becomes

r (r − 1)= 0� r1 =1, r2 =0 (269)

which is the “scary” case of r1− r2 = integer!

Of course we know that nothing can go wrong and we can determine every an one by one. Let’s check
what saves us.

Taking r = r1 leads to one solution y1 = x [
 ]. Taking r = r2, the coefficient for a1 becomes 0 in the
recurrence relation for n = 1. But taking a closer look reveals that the n= 1 relation actually becomes

0 a1 + [(0 + r2) p1 + q1] a0 =0 (270)

which is simply

0 a1 = 0! (271)

Therefore, we can simply pick a1 to be any nonzero number and proceed to determine a2, a3,	 .

This is actually the idea behind the following argument leading to a second solution for the case r1 −
r2 = integer.

In the following we use r1, r2 to denote the two roots, and take r1 to be the root with larger real part,
and denote n0 = r1− r2 to be the positive integer difference between the two roots.

We try to modify the “differentiate with respect to r” trick. Recall that, if we set a0 = 1, and compute
an as functions of r, then the function y = y(x; r) satisfies

y ′′ + p(x) y ′+ q(x) y = [r (r − 1)+ p0 r + q0] x
r−2 =(r − r1) (r − r2) xr−2. (272)

Clearly,
∂y

∂r
is not a solution to the original equation no matter what value we assign to r. The reason

being that the dependence of the right hand side on r − r1 and r − r2 are both linear.

The fix to this situation comes from the following observation. If instead of setting a0 = 1, we keep the
a0 dependence, y(x; r) would solve

y ′′+ p(x) y ′ + q(x) y = a0 (r − r1) (r − r2)xr−2. (273)

Now if we take a0 = r − r1 or r − r2, the right hand side would contain (r − r1)
2 or (r − r2)

2 and the differ-
entiation trick would work.

Say we take a0 = r − r1. Then

y ′′+ p(x) y ′+ q(x) y = (r − r1)
2
(r − r2)xr−2 (274)

and
(

∂y

∂r

)′′

+ p(x)

(

∂y

∂r

)′

+ q(x)

(

∂y

∂r

)

=
[

2 (r − r1) (r − r2) + (r − r1)
2 + (r − r1)

2
(r − r2) ln|x|

]

xr−2 (275)

Thus
∂y

∂r
N r=r1

solves the equation. Similarly, if we take a0 = r − r2,
∂y

∂r
N r=r2

would be a solution.



So instead of getting one more solution, we get two more? This sounds too good to be true. Indeed it
is. Let’s study the two choices more carefully. Let Y (x; r) be the r-dependent solution obtained by setting
a0 = 1. Note that Y (x; r2) is not well-defined although Y (x; r) for all other r’s are. Checking the recur-
rence relation, we easily see that if we keep a0 dependence, we would get

y(x; r)= a0 Y (x; r) (276)

except for r = r2.

• Setting a0 = r − r1.
In this case we get

y(x; r) = (r − r1)Y (x; r) (277)

Compute
∂y

∂r
N r=r1

=

[

(r − r1)
∂Y

∂r
+Y (x; r)

]

r=r1

= Y (x; r1). (278)

But Y (x; r1) is just the solution obtained through setting r = r1 and a0 = 1! We see that Y (x; r1) =
y1(x). So we are not getting any new solution!

• Setting a0 = r − r2.
In this case we cannot simply write y(x; r) = (r − r2) Y (x; r) and differetiate anymore, as Y (x;

r2) is not defined. We need to go deep into the recurrence relation:

[(n + r) (n + r − 1)+ (n + r) p0 + q0] an +
∑

m=0

n−1

[(m + r) pn−m + qn−m] am = 0. (279)

It can be re-written into

[(n + r − r1) (n + r − r2)] an =−
∑

m=0

n−1

[(m + r) pn−m + qn−m] am. (280)

Divide both sides by the coefficient for an, we have

an(r)=−
∑

m=0
n−1

[(m + r) pn−m + qn−m] am

(n + r − r1) (n + r − r2)
. (281)

The denominator would become infinity when n = n0 and r = r2, as the first factor becomes n0 +
r − r1 = r − r2. So the difficulty we meet here is: Can we define y(x; r) at r = r2 reasonably?

Now take into consideration that a0 = r − r2. Clearly, for each n < n0, we can write an(r) =
ān(r) a0(r) = ān(r) (r − r2), where ān(r) is in fact the value of an if we set a0 = 1. Thus the formula
for an0

becomes

an0
(r)=−

∑

m=0
n−1

[(m + r) pn−m + qn−m] ām (r − r2)

(r − r2) (n0 + r − r2)
=−

∑

m=0
n−1

[(m + r) pn−m + qn−m] ām

(n0 + r − r2)
. (282)

We see that, when we take a0 = r − r2, an0
(r) is well-defined for all r around r2 (Keep in mind that

all we need is to be able to differentiate new r2 and then set r = r2.).
From the above analysis, we see that when taking a0 = r − r2, all coefficients an(r) can be deter-

mined uniquely.
Now let

y(x; r) =xr
∑

an(r) xn. (283)

We see that

y2(x)=
∂y(x; r)

∂r
N r=r2

= xr2 ln|x|
∑

n=0

∞

an(r2)xn +xr2

∑

n=0

∞

an
′ (r2) xn. (284)

Finally, we notice that, an(r2) = 0 for all n < n0, but an0
(r2)� 0. As a consequence, an(r2)� 0 when n > n0

as well.



So the first term is in fact

xr2 ln|x|
∑

n=n0

∞

an(r2)xn =xr1 ln|x|
∑

n=0

∞

an+n0
(r2) xn. (285)

To further simplify, we again study the recurrence relation.

(n = 0): [r (r − 1)+ p0 r + q0] a0 = 0, (286)

(n > 1): [(n + r) (n + r − 1)+ (n + r) p0 + q0] an +
∑

m=0

n−1

[(m + r) pn−m + qn−m] am = 0. (287)

We know that an(r2) =0 for every n < n0. So the recurrence relation for n > n0 can be written as

[(n + r) (n + r − 1)+ (n + r) p0 + q0] an +
∑

m=n0

n−1

[(m + r) pn−m + qn−m] am = 0. (288)

Now define r̃(r) = r + n0, let ñ = n − n0, and ãñ = an. We see that r̃(r2) = r1. The recurrence relation now
becomes

(ñ > 1): [(ñ + r̃) (ñ + r̃ − 1)+ (ñ + r̃) p0 + q0] ãñ +
∑

m=0

ñ−1

[(m + r̃) pñ−m + qñ−m] ãm = 0. (289)

This is exactly the same as the original recurrence relation! As a consequence we have

ãn(r2) = an(r1). (290)

As a consequence,

xr1 ln|x|
∑

n=0

∞

an+n0
(r2)xn = xr1 ln|x|

∑

n=0

∞

ãn(r2) xn = an0
(r2)xr1 ln|x|

∑

n=0

∞

an(r1)xn = an0
(r2) ln|x| y1. (291)

We see that the constant C in the theorem is exactly an0
(r2).

Example 52. Solve

x y ′′+ 2 y ′− y = 0 (292)

at 0.
Solution. First write it as

y ′′+
2

x
y ′− 1

x
y = 0. (293)

It is clear that x = 0 is a regular singular point, with x p = 2 and x2 q =− x. That is, p0 = 2, q1 =− 1, and
all other pn, qn are 0.

The indicial equation is

r (r − 1)+ 2 r =0� r1 = 0, r2− 1. (294)

Note that we have already taken r1 to be the one with larger real part.
The recurrence relation for n > 1 is

(n + r) (n + r +1) an = an−1, n= 1, 2,	 . (295)

Taking r = r1 =0, we reach

an =
1

n! (n +1)!
a0 (296)

which gives the first solution

y1(x)=
∑

n=0

∞
1

n! (n + 1)!
xn. (297)

Now we find the second solution. Take a0 = r − r2 = r + 1. Then setting n = 1 in the recurrence relation we
obtain

(r + 1) (r + 2) a1 = a0 = r + 1� a1 =
1

r + 2
. (298)



As a1(r2)=
1

− 1+ 2
= 1, the constant C = 1.

The recurrence relation then gives

an =
1

(r +2)2
 (r +n)2 (r + n +1)
. (299)

Taking logarithm and differentiate, we reach

an
′

an
=− 2

∑

k=2

n
1

r + k
− 1

r + n +1
, n = 1, 2, 3,	 . (300)

Now we can write down the second solution

y2(x)= y1(x) ln|x|+ |x|−1

[

1−
∑

n=1

∞
1

n! (n− 1)!

(

2
∑

k=1

n−1
1

k
+

1

n

)

xn

]

. (301)

The general solution, of course, is

y = C1 y1 +C2 y2. (302)

This formula is valid for 0 < |x|<∞.

4. Special Functions.
From the differential equation point of view, “special functions” are solutions to particular classes of

equations, each involving a parameter. The most popular “special functions” are the trignometric func-
tions cos(nx) and sin(n x), which are solutions to the boundary value problems

y ′′+ n2 y =0, y(0)= y(2 π), y ′(0)= y ′(2π). (303)

The importance of cos and sin in both theory and practice comes from the following fact:

For any function f defined on 06 x 6 2 π, there are constants an and bn such that

f(x)=
a0

2
+
∑

n=1

∞

[an cosn x+ bn sinn x]. (304)

Here the equality “= ” may differ slightly from “equals everywhere”.

It turns out that, for many other second order differential equations with one or more parameters, the
solutions to their appropriate boundary value problems (called “special functions”) have similar ability of
representing general functions. This is the motivation behind studying such “special functions”.

Remark 53. There are many other ways to introduce special functions. One particularly interesting
approach is through representation of Lie groups.

4.1. Bessel functions.
Bessel functions are solutions to the equation

x2 y ′′+ x y ′+
(

x2− ν2
)

y = 0 (305)

where ν is a parameter. Writing the equation into standard form, we have

y ′′+
1

x
y ′+

x2− ν2

x2
y = 0. (306)

It is clear that x =0 is a regular singular point. And furthermore we have

p0 =1, q0 =− ν2, q2 = 1, pn = qn = 0 for all other n. (307)

The indicial equation is

r (r − 1)+ r − ν2 = 0� r1,2 =± ν. (308)

If we consider the case ν is a non-negative integer, then r1 = ν, r2 =− ν.



Now we need to discuss case by case.

• r1− r2 =2 ν is not an integer.
Using the recurrence relation we obtain

y1(x)=

[

1− 1

22 (1 + ν) 1!
x2 +

1

24 (1 + a) (2 + a) 2!
x4−
 ]xν (309)

and

y2(x) =

[

1− 1

22 (1− a) 1!
x2 +

1

24 (1− a) (2− a) 2!
x4−
 ]x−ν. (310)

• ν = 0, that is r1 = r2.

In this case we can take

y1(x) =
∑

n=0

∞
(− 1)

n

(n!)2

(

x

2

)2n

, (311)

and for the second solution we compute

a2n =
(− 1)

n

(r + 2)2 (r + 4)2
 (r + 2n)2
(312)

which gives

y2(x)= y1(x) ln|x| −
∑

n=1

∞
(− 1)

n

(n!)2

(

∑

k=1

n
1

k

)

(

x

2

)2n

. (313)

• 2 ν is an integer. This is further divided into two cases.

◦ ν is not an integer.
In this we have

y(x)= x−ν

[

C1

∑

n=0

∞
(− 1)

n
Γ(1− ν)

n! 22m Γ(1− ν + n)
x2n + C2

∑

n=0

∞
(− 1)

n
Γ(ν + 1)

m! 22m Γ(n + ν + 1)
x2ν+2m

]

. (314)

◦ ν is an integer.
In this case

y1(x)=
∑

n=0

∞
(− 1)

n

n! Γ(n+ 1 + ν)

(

x

2

)2n+ν

, (315)

while y2 takes the form

2

π

[

(

γ + ln
∣

∣

∣

x

2

∣

∣

∣

)

y1 − 1

2

∑

k=0

ν−1
(ν − k − 1)!

k!

(

x

2

)2k−ν

+
1

2

∑

n=0

∞

( −

1)
n+1 φ(n)+ φ(n + ν)

n! (n + ν)!

(

x

2

)2n+ν

]

. (316)

Here φ(0)= 0, φ(n)=
∑

k=1
n

(1/k) and γ is the Euler constant:

γ = lim
nր∞

(φ(n)− lnn)= 0.5772157
 . (317)

5. Beyond regular singular point.

What happens when the singular point is not regular? One major change is that it is called a irreg-
ular singular point instead.

Anyway, we briefly mention a few things.

• The ansatz

y = xr
∑

an xn (318)

may not yield any solution.



Example 54. Solving x3 y ′′ − y = 0 using Frobenius’ method would lead to a0 = 0, which is not
allowed.

Example 55. Solving x2 y ′′+ (1 + 3x) y ′+ y =0 using Frobenius’ method leads to

y(x)= a0

∑

n=0

∞

(− 1)
n
n! xn (319)

which is a useless formula as the radius of convergence is 0.

• There is no complete theory. One has to be very clever at guessing the form of the solutions, and
be very good in analysis to show convergence of the formal sum obtained. Of course, after a few
geniuses have worked on such equations, some “rules of thumb” become available. Nevertheless,
solving these equations remains largely an art.

• Dealing with irregular singular points is one major topic in a branch of mathematics called “asymp-
totic analysis”.


