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1. What is a differential equation?.

1.1. Definitions and examples.

A differential equation (DE) is an equation involving one or more unknown functions and their deriva-
tives.

• An “ODE” (ordinary differential equation):

dy(x)

dx
+ y(x)= 0 (1)

• An “PDE” (partial differential equation – involves partial derivatives!):

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0 (2)

• An ODE with some generic “known” function:

dy(x)

dx
+ y(x)= f(x) (3)

Note. From now on we will often use the shorthand y ′ for
dy

dx
. Also, following tradition, when the vari-

able is denoted t instead of x, ẏ may be used instead of y ′.

1.2. Classifications.

Differential equations is a vast field, and currently there is no hope of reaching a full understanding.
Instead, a “greedy” type approach is used to grasp classes of equations here and there. Naturally, certain
classifications appear.

Ordinary vs Partial.

One major classification is “ordinary differential equations”(ODE) vs “partial differential equa-
tions”(PDE), based on the number of variables involved, or equivalently whether “partial derivatives”
appear in the equation or not.1 For example,

dy(x)

dx
+ y(x)= 0 (4)

is an ODE while
∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0 (5)

1. Not exactly “equivalent”, but equivalent for all our purposes in this course.



is a PDE.

Note. From now on we will use “differential equations” to refer to “ordinary differential equations”.

Scalar vs System.

This is a classification based on the number of unknown functions. When there is only one, the equa-
tion is a scalar equation; When there are more than one, the equation is a system. As any “nice” equation
satisfies the following,

The number of unkonwn functions =The number of equations2

we can tell by just looking at the number of equations.

Order.

Another important way of classifying differential equations is to look at the highest order of derivative
on the unknown function in the equation, and count the number of derivatives. This number is called
the “order” of the equation. For example, let’s look at the ODE

x2 y ′′
− 3 x y ′+ 3 y = 0. (6)

The equation involves the following derivatives of the unknown function y: y ′′, y ′, y. The highest order of
derivative involved is then 2nd order. Consequently the order is 2.

We can also do the same to PDEs. Let’s take the Monge-Ampere equation

∂2u

∂x2

∂2u

∂y2
−

(

∂2u

∂x ∂y

)2

= f(x, y) (7)

where u is the unknown function.3 For this equation the following derivatives of the unknown function u

are involved:
∂2u

∂x2
,

∂2u

∂y2
,

∂2u

∂x ∂y
. All of them are second order (for the last one, one derivative w.r.t. x and one

derivative w.r.t. y – adds up to 2). Thus the order of the equation is 2.

Linear vs Nonlinear.

This is another important classification. Roughly speaking, a differential equation is linear if wherever
an unknown quantity (the unknown function or its derivatives) appears, it appears alone – not in a pro-
duct with another unknown term, not inside a exponential, etc. As an example we look at

x2 y ′′
− 3 x y ′+ 3 y = 0. (8)

The unknown quantities are highlighted. Now we check each of them:

• y ′′ is in the product x2 y ′′. However x2 is not “unknown”, thus does not make the equation non-
linear;

• y ′ is in the product − 3 x y ′, which is also OK;

• y is in the product 3 y, also OK.

As a matter of fact, we have

Theorem. A linear ODE of order n is always of the form

an(x) y(n) + an−1(x) y(n−1) +
 + a0(x) y = b(x). (9)

Thus the above equation is clearly linear with a2 = x2, a1 =− 3 x, a0 = 3, b= 0.
On the other hand, we easily see that the Monge-Ampere equation

∂2u

∂x2

∂2u

∂y2
−

(

∂2u

∂x ∂y

)2

= f(x, y) (10)

2. The justification (aka proof) of this claim is way beyond what we can cover.

3. Those who are familiar with linear algebra and multi-variable calculus may recognize that the left hand side is just
the determinant of the Hessian matrix: det

(

∇
2u

)

. This particular determinant is an important quantity in many fields, such
as cosmology.



is nonlinear. As two “unknown terms”
∂2u

∂x2
and

∂2u

∂y2
is multiplied together.

Remark 1. Why do we single out the unknown quantities and discuss whether they appear in a linear or
nonlinear manner? Why don’t we say the equation is nonlinear when we see terms such as x2 or x y?
Aren’t such products also “nonlinear”? The reason is the following.

When the unknown quantities appear in a linear manner, the equation can be solved rel-
atively easily: Figure out a few solutions4 and we automatically obtain all solutions.

This property is not affected by the nonlinear existence of the variable, say terms like x2. However it is
lost when some unkonwn quantities are combined in a nonlinear manner.

For example, to solve the equation

y ′′+3 y ′+ 5 y = 7 (11)

we only need to figure out one single solution as well as 2 solutions y1, y2 of the homogeneous counterpart

y ′′+ 3 y ′ +5 y =0, (12)

and all solutions are included in the expression c1 y1 + c2 y2 + yp (c1, c2 are constants). If we change 3, 5, 7
to functions of x, such as

y ′′+ e3x y ′+ 5 x2 y = 7 sinx (13)

Nothing is changed – it still holds that one solution of this equation and two of y ′′ + e3x y ′ + 5 x2 y = 0 are
enough to generate all solutions.5 The (very much) nonlinear terms e3x y ′ or sin x does not change any-
thing. On the other hand, as soon as we introduce a little bit nonlinearity into the unknown quantities,
say

y y ′′+ 3 y ′+ 5 y = 7 (14)

The good property is lost.
Therefore, to make the adjective “nonlinear” informative, we restrict ourselves to nonlinearity regarding

the unknown quantities only.

Constant coefficient vs Variable coefficient.

A linear6 differential equation is a constant coefficient one if besides unknowns, only constants appear
(the right hand side enjoys an exception). For example,

3 y ′′+ 2 y ′
− y = 3 x (15)

is constant coefficient while

x2 y ′′
− 3 x y ′+3 y =0. (16)

is not.

Homogeneous vs Nonhomogeneous.

A linear7 differential equation is homogeneous if every term involves the unknown function. Otherwise
it’s nonhomogeneous. For example, the ODE

x2 y ′′
− 3 x y ′+3 y =0. (17)

is homogeneous while the Monge-Ampere equation

∂2u

∂x2

∂2u

∂y2
−

(

∂2u

∂x ∂y

)2

= f(x, y) (18)

is nonhomogeneous.

4. The exact number of solutions needed depends on the order and whether the equation is homogeneous or not.

5. Of course, finding these three guys becomes much harder now.

6. For nonlinear equations the difference between constant or variables coefficients becomes blurred. After all the
unknown quantities can be viewed as “coefficients” and they are definitely “variable”.

7. As the major advantage of homogeneous equations is that if y1, y2 are solutions, so is a y1 + b y2 where a, b are con-
stants. Clearly for nonlinear equations, homogeneity becomes meaningless.



Rules of thumb regarding difficulty.

Easier Harder
ODE PDE
Scalar System
Low order High order
Linear Nonlinear
Constant coefficient Variable coefficient
Homogeneous Nonhomogeneous

Table 1. Relative difficulty of differential equations

From this table we easily see that the simplest differential equation one can has is

ODE - scalar - 1st order - linear - constant coefficient - homogeneous

or in better wording: 1st order linear scalar homogeneous ODE with constant coefficients. As linear
ODEs can be characterized as follows,

Theorem. A linear ODE of order n is always of the form

an(x) y(n) + an−1(x) y(n−1) +
 + a0(x) y = b(x). (19)

we easily see that a general form of the “simplest” differential equations is

a y ′+ b y = 0. (20)

We will indeed start from this problem after the introduction.
On the other hand, the hardest problem one can have is clearly: high order nonlinear nonhomogeneous

PDE system with variable coefficients. Most equations arising from real world applications belongs here.
For example the Navier-Stokes equation describing fluids, or the Einstein equation governing our universe.

2. Roadmap.

• We will start from first order equations, both linear and nonlinear. Two methods will be intro-
duced, although they will be “unified” at the end of the day.

• We then move on to 2nd and higher order equations. It turns out that in this case we are no longer
able to systematically solve nonlinear equations. So we focus on linear ones. Homogeneity becomes
important here (It’s not important for 1st order equations).

• First we study linear homogeneous equations.

◦ Constant coefficients: All solutions can be obtained easily;

◦ Variable coefficients: Good theory, but can only solve some of them through clever tricks;

• When the equation is non-homogeneous, we introduce the following systematic approaches.

◦ Constant coefficients: Laplace transform;

◦ Variable coefficients: Series method;

There is also a method called “variation of parameters”.

• All the previous (except for nonlinear 1st order equations) can be seen as special cases of 1st order
linear ODE systems;8

• Finally, there are many equations we cannot solve analytically (that is writing down a formula for
the solution). Nevertheless, much information can be gathered using qualitative theory.

3. Some jargons.

• General solution.

8. Illustrating “system > scalar” in difficulty!



When solving a differential equation, one or more indefinite integrations are usually performed.
As a consequence the resulting solution will contain one or more constants, whose values are under
no restriction (sometimes referred to as “arbitrary constants” to emphasize this point). Such solu-
tions are called “general solutions”. As we will see, for linear equations the number of constants is
the same as the order of the equation. A general solution summarizes infinitely many solutions. If
we assign a value to each constant, we get a specific solution; If we assign a different set of values,
we get a different solution, etc.

Remark 2. One thing that is quite confusing is: General solutions � All solutions. In other
words, there may be solutions that are not included in the general solution formula. For example,
the general solution for (y ′)

2
− x y ′ + y = 0 is y(x) = C x − C2, where C is our “arbitrary constant”,

but y(x)= x2/4 is also a solution.

Remark 3. When asked to find the “general solution”, you do not need to worry whether you have
found all solutions or not.

• Initial value problem.
As discussed above, there are usually “arbitrary constants” in the general solutions we obtained.

These constants become fixed-value when we specify “initial values”, that is the value of the
unknown function as well as an appropriate number of its derivatives at an “initial point”. For
example, the general solution to

y ′′+ 3 y +7 =5 x (21)

will contain two constants, both values will be fixed by specifying initial values

y(0)= 1, y ′(0) =3. (22)

Of course other values will have the same effect.

• Boundary value problem.
For 2nd order equations, there is another class of problem which specify values at two end

points instead of one “initial point”. For example

y ′′+ 3 y + 7 =5 x, y(0)= 1, y(2)= 7. (23)

Note the equation is solved between 0 and 2. Such “boundary values” will also fix the values of the
two constants. Boundary value problems are very important in both theory and practice as it is
closely related to partial differential equations.


