MATH 334 2010 MIDTERM 1

Name	
ID#	
SIGNATURE	

- Only pen/pencil/eraser are allowed. Scratch papers will be provided.
- Please **write clearly**, with intermediate steps to **show sufficient work** even if you can solve the problem in "one go". Otherwise you may not receive full credit.
- Please box, underline, or highlight the most important parts of your answers.

Problem	Points	Score
1	25	
2	25	
3	15	
4	20	
5	15	
6	5 (extra)	
Total	$100 \! + \! 5$	

Problem 1. (25 pts) Solve the initial value problem

$$y'' + 4y' + 4y = 0,$$
 $y(-1) = 2, y'(-1) = 1.$ (1)

Solution. This is problem 3.4 14.

• (5 pts) Characteristic equation:

$$r^2 + 4r + 4 = 0. (2)$$

• (5 pts) Solutions:

$$r_1 = r_2 = -2. (3)$$

• (4 pts) General solution

$$y = C_1 e^{-2t} + C_2 t e^{-2t}. (4)$$

- (6 pts) Find C_1, C_2 using initial conditions:
 - \circ (2 pts) y(-1) = 2 gives

$$C_1 e^2 - C_2 e^2 = 2; (5)$$

o (2 pts) Compute

$$y' = -2C_1 e^{-2t} - 2C_2 t e^{-2t} + C_2 e^{-2t}.$$
 (6)

 \circ (2 pts) y'(-1) = 1 gives

$$-2C_1e^2 + 3C_2e^2 = 1; (7)$$

- (2 pts) Solve the equations. Multiply the first by 2 and add to the 2nd, we get $C_2 = 5 e^{-2}$. then $C_1 = 7 e^{-2}$.
- (3 pts) Solution is given by

$$y = 7e^{-2(t+1)} + 5te^{-2(t+1)}. (8)$$

Problem 2 (25 pts) Find the general solution

$$y' + 3y = t + e^{-2t}. (9)$$

Solution. This is Problem 2.1 1.

It is a linear first order equation.

- (5 pts). p(t) = 3, so $e^{\int p} = e^{3t}$.
- (2 pts). We have

$$(e^{3t}y)' = e^{3t}t + e^t. (10)$$

(3 pts). This gives

$$e^{3t} y = \int e^{3t} t \, dt + \int e^t \, dt + C.$$
 (11)

(2 pts) Calculate

$$\int e^t \, \mathrm{d}t = e^t. \tag{12}$$

(9 pts) Calculate $\int e^{3t} t$.

$$\int e^{3t} t \, dt = \int t \, d\left(\frac{1}{3}e^{3t}\right) \qquad (3 \, \text{pts})$$

$$= \frac{t}{3}e^{3t} - \int \frac{1}{3}e^{3t} \, dt \qquad (3 \, \text{pts})$$
(13)

$$= \frac{t}{3}e^{3t} - \int \frac{1}{3}e^{3t} dt \qquad (3 \text{ pts})$$
 (14)

$$= \frac{t}{3}e^{3t} - \frac{1}{9}e^{3t}. \qquad (3 \text{ pts})$$
 (15)

(2 pts) We reach

$$e^{3t} y = \frac{1}{3} t e^{3t} - \frac{1}{9} e^{3t} + e^{t} + C.$$
 (16)

• (2 pts) The solution then is

$$y = \frac{1}{3}t - \frac{1}{9} + e^{-2t} + Ce^{-3t}.$$
 (17)

Solution 2. As the equation is linear, we can solve it by solving

$$y' + 3y = 0 \Longrightarrow \tilde{y}; \quad y' + 3y = t \Longrightarrow y_{p1}; \quad y' + 3y = e^{-2t} \Longrightarrow y_{p2}$$
 (18)

and have

$$y = \tilde{y} + y_{p1} + y_{p2}. \tag{19}$$

- (9 pts) Solve y' + 3y = 0.
 - (2 pts) Realize the need to solve y' + 3y = 0.
 - (5 pts) Find the correct integrating factor e^{3t} .
 - (2 pts) Write down the general solution

$$\tilde{y} = Ce^{-3t}. (20)$$

- (7 pts) Solve y' + 3y = t.
 - (2 pts) Realize the need to solve y' + 3y = t.
 - \circ (2 pts) Guess y = At + B.
 - (2 pts) Finding out A = 1/3, B = -1/9.
 - o (1 pt) Write down

$$y_{p1} = \frac{t}{3} - \frac{1}{9}. (21)$$

- (7 pts) Solve $y' + 3y = e^{-2t}$.
 - (2 pts) Realize the need to solve $y' + 3y = e^{-2t}$.
 - $\circ \quad (2 \text{ pts}) \text{ Guess } y = A e^{-2t}.$
 - \circ (2 pts) Finding out A = 1.
 - o (1 pt) Write down

$$y_{p2} = e^{-2t}. (22)$$

• (2 pts) Write down the solution

$$y = Ce^{-3t} + \frac{t}{3} - \frac{1}{9} + e^{-2t}. (23)$$

Problem 3. (15 pts) Find the general solution for

$$t^2y'' + 4ty' + 2y = 0. t > 0. (24)$$

Solution. This is 3.3 36.

- (2 pts) This is Euler equation.
- (5 pts) Guess $y = t^r$ to get the characteristic equation

$$r(r-1) + 4r + 2 = 0. (25)$$

• (4 pts) Solve

$$r_1 = -1, \quad r_2 = -2.$$
 (26)

• (4 pts) Write down

$$y = C_1 t^{-1} + C_2 t^{-2}. (27)$$

Solution 2.

- (3 pts) Guess one solution t^{-1} or t^{-2} .
- (8 pts) Carry out reduction of order correctly. Note that you need to write the equation into

$$y'' + \frac{4}{t}y' + \frac{2}{t^2}y = 0 (28)$$

before using the formula

$$y_2 = y_1 \int \frac{e^{-\int p}}{y_1^2}. (29)$$

• (4 pts) Write down the solution.

Problem 4 (20 pts) Find the general solution:

$$y dx + (2xy - e^{-2y}) dy = 0.$$
 (30)

Solution. This is 2.6 28.

- (2 pts) $M = y, N = 2xy e^{-2y}$.
- (2 pts) Check

$$\frac{\partial M}{\partial y} = 1, \qquad \frac{\partial N}{\partial x} = 2y$$
 (31)

 $1 \neq 2$ y so not exact!

• (2 pts). Need μ such that

$$\frac{\partial(\mu M)}{\partial y} = \frac{\partial(\mu N)}{\partial x} \tag{32}$$

which leads to

$$M\frac{\partial\mu}{\partial y} - N\frac{\partial\mu}{\partial x} = \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)\mu. \tag{33}$$

• (1 pt) This is

$$y\frac{\partial\mu}{\partial y} - \left(2\,x\,y - e^{-2\,y}\right)\frac{\partial\mu}{\partial x} = \left(2\,y - 1\right)\,\mu. \tag{34}$$

- (1 pts). Guess $\mu(x)$, not working. Guess $\mu(y)$.
- We have

$$y \mu' = (2y - 1) \mu$$
 (1pt)

$$\frac{\mu'}{\mu} = 2 - \frac{1}{y}$$
 (1pt)

$$(\ln \mu)' = 2 y - \ln y$$
 (1pt)

$$\mu = e^{2y}/y.$$
 (1pt)

• (2 pts) Multiply the equation

$$e^{2y} dx + (2xe^{2y} - 1/y) dy = 0.$$
 (39)

• (2 pts)

$$\frac{\partial u}{\partial x} = e^{2y} \Longrightarrow u(x, y) = x e^{2y} + g(y). \tag{40}$$

• (2 pts)

$$\frac{\partial u}{\partial y} = 2 x e^{2y} + g'(y) = 2 x e^{2y} - 1/y \Longrightarrow g'(y) = -1/y \Longrightarrow g = -\ln|y|. \tag{41}$$

• (1 pt) The solution is

$$x e^{2y} - \ln|y| = C. \tag{42}$$

• (1 pt) Finally check y=0 as our multiplier is e^{2y}/y . Rigorously speaking y=0 is a solution. But it's OK for this exam if you conclude $-1 \, \mathrm{d} y = 0$ is not satisfied by y=0.

Problem 5 (15 pts) Can $y = \sin(t^2)$ be a solution on an interval containing t = 0 of an equation y'' +p(t) y' + q(t) y = 0 with continuous coefficients? Explain your answer.

Solution. This is 3.2 16.

- (1 pt) Plug $y = \sin(t^2)$ into the equation.
- Compute

$$(\sin t^2)' = 2t \cos t^2$$
 (2 pts) (43)
 $(\sin t^2)'' = 2 \cos t^2 - 4t^2 \sin t^2$ (2 pts)

$$(\sin t^2)'' = 2\cos t^2 - 4t^2\sin t^2$$
 (2 pts)

(3 pts) Thus

$$2\cos t^2 - 4t^2\sin t^2 + 2p(t)t\cos t^2 + q(t)\sin t^2 = 0.$$
(45)

(5 pts) As p, q are continuous on an interval containing p, p(0), q(0) are finite. Taking p in the above we get

$$2 - 0 + 0 + 0 = 0. (46)$$

A contradiction!

(2 pts) So the answer is No.

Problem 6 (5 pts) Assume that p and q are continuous and that the functions y_1, y_2 are solutions of the differential equation y'' + p(t) y' + q(t) y = 0 on an open interval I. Prove that if y_1 and y_2 have maxima or minima at the same point in I, then they cannot be linearly independent over I.

Solution. This is 3.2 39.

- (2 pts) Let x_0 be the point. Then as y_1 reaches maximum/minimum there, $y'_1(x_0) = 0$; Similarly $y'_2(x_0) = 0$.
- (2 pts) Compute the Wronskian:

$$W(y_1, y_2)(x_0) = y_1(x_0) y_2'(x_0) - y_1'(x_0) y_2(x_0) = 0.$$
(47)

• (1 pt) Therefore y_1, y_2 cannot be linearly independent.