
Math 334 A1 Homework 3 (Due Nov. 5 5pm)

• No “Advanced” or “Challenge” problems will appear in homeworks.

Basic Problems

Problem 1. (4.1 11) Verify that the given functions are solutions of the differential equation, and determine their

Wronskian.

y ′′′+ y ′= 0; 1, cos t, sin t. (1)

Solution. We compute

(1)′′′ +(1)′ =0 + 0= 0; (2)

(cos t)′′′+ (sin t)′=− cos t + cos t = 0; (3)

(sin t)′′′+ (sin t)′=− cos t + cos t = 0. (4)

Compute the Wronskian:

W =det







1 cos t sin t

(1)′ (cos t)′ (sin t)′

(1)′′ (cos t)′′ (sin t)′′






=det





1 cos t sin t

0 − sin t cos t

0 − cos t − sin t



= sin2t + cos2t = 1. (5)

Problem 2. (4.2 1) Express 1+ i in the form R (cos θ + i sinθ) = R eiθ.

Solution. We need

R cos θ = 1, R sinθ = 1. (6)

Therefore

R2 = 2� R = 2
√

. (7)

This gives

cos θ =
1

2
√ , sin θ =

1

2
√ � θ =

π

4
+ 2 k π (8)

where k can be any integer.

Therefore

1+ i = R
(

cos
(

π

4
+ 2 k π

)

+ i sin
(

π

4
+ 2 k π

))

=R e
i
(

π

4
+2kπ

)

. (9)

Problem 3. (4.2 9) Find all four roots of 11/4.

Solution. To find all roots, we need to write 1 into the form R eiθ. Clearly R = 1, cosθ = 1, sinθ = 0 thus

1= e2kπi, k is any integer. (10)

Now we have

11/4 = e(2kπi)/4 = e
kπ

2
i
. (11)

It is clear that k and k + 4 gives the same root for any k. Therefore the four roots are given by k = 0, 1, 2, 3. Setting k =

0 we obtain 1; Setting k = 1 we obtain e
π

2
i
= i; Setting k = 2 we obtain − 1; Setting k = 3 we obtain − i. So finally the

four roots are

1, i,− 1,− i. (12)

Problem 4. (5.1 7) Determine the radius of convergence of the power series

∑

n=1

∞

(− 1)n
n2 (x+ 2)n

3n
. (13)

Solution. We have

an =
(− 1)n

n2

3n
. (14)

Thus
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=
1
3

(n+ 1)
2

n2
. (15)

Taking the limit nր∞, we have

L = lim
n�∞

1

3

(n + 1)2

n2
=

1

3
. (16)

Therefore the radius of convergence is

ρ = L−1 = 3. (17)

Problem 5. (5.1 13) Determine the Taylor series about x0 for the given function:

y(x)= lnx, x0 = 1. (18)
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Solution. Recall that the Taylor series is given by

y(x)= y(x0) + y ′(x0) (x− x0)+
y′′(x0)

2
(x− x0)

2 + 
 =
∑

n=0

∞

y(n)(x0)
n!

(x− x0)
n
. (19)

Now y = lnx and x0 = 1. We compute for n >1

y(n)(x0)=
dn

dxn(lnx) N x=x0
= (− 1)n+1 (n − 1)! x−n N x=x0=1 = (− 1)n+1 (n − 1)!. (20)

Note that y(x0)= ln1= 0.

So the desired Taylor series is

lnx=
∑

n=1

∞

(− 1)
n+1

n
(x− 1)n

. (21)

Problem 6. (5.1 21) Rewrite the given expression as a sum whose generic term involves xn:

∑

n=2

∞

n (n− 1) an xn−2. (22)

Solution. WE need to shift n − 2� n. This means the sum now starts from 0, and n becomes n + 2. So the sum

becomes
∑

n=0

∞

(n+ 2) (n+ 1) an+2 xn. (23)

Problem 7. (5.2 3) Consider

y ′′− x y ′− y = 0, x0 = 1, (24)

a) Find the first four terms in each of two solutions y1 and y2 (unless the series terminates sooner).

b) By evaluating the Wronskian W (y1, y2)(x0), show that y1 and y2 form a fundamental set of solutions (that is y1,

y2 are linearly independent.)

Solution.

a) Write

y =
∑

n=0

∞

an (x− x0)
n =

∑

n=0

∞

an (x − 1)n
. (25)

Substitute into the equation, we have
(

∑

n=0

∞

an (x− 1)n

)

′′

− [(x− 1) + 1]

(

∑

n=0

∞

an(x− 1)n

)

′

−
∑

n=0

∞

an (x − 1)n = 0. (26)

First compute the first term:
(

∑

n=0

∞

an (x− 1)n

)

′′

=
∑

n=2

∞

n (n− 1) an (x − 1)n−2
. (27)

Shifting index, we reach
(

∑

n=0

∞

an (x− 1)
n

)

′′

=
∑

n=0

∞

(n +2) (n +1) an+2 (x − 1)
n
. (28)

Now compute the second term

− [(x− 1) + 1]

(

∑

n=0

∞

an(x− 1)n

)

′

= − (x− 1)
∑

n=1

∞

n an (x − 1)n−1−
∑

n=1

∞

n an (x − 1)n−1 (29)

= −
∑

n=1

∞

n an (x− 1)
n −

∑

n=0

∞

(n + 1) an+1 (x− 1)
n
. (30)

Now the equation becomes

∑

n=0

∞

(n + 2) (n + 1) an+2 (x− 1)n −
∑

n=1

∞

n an (x− 1)n −
∑

n=0

∞

(n + 1) an+1 (x − 1)n −
∑

n=0

∞

an (x− 1)n = 0. (31)

Note that in the above, three sums start from 0 while one starts from 1. Thus we need to write the n = 0 term

separately:

2 a2−a1− a0 +
∑

n=1

∞

[(n + 2) (n + 1) an+2−n an − (n+ 1) an+1− an] = 0. (32)

The recurrence relations are

2 a2−a1− a0 = 0 (33)

(n+ 2) (n+ 1) an+2− (n + 1) an − (n + 1) an+1 = 0 n >1 (34)
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The second relation can be simplified to

(n + 2) an+2 = an + an+1. n >1 (35)

Solving them one by one, we have

(n = 0) a2 =
1
2

a0 +
1
2

a1 (36)

(n = 1) a3 =
1

3
(a1 + a2)=

1

6
a0 +

1

2
a1 (37)

(n = 2) a4 =
1
4

(a2 + a3)=
1
4

(

2
3

a0 + a1

)

=
1
6

a0 +
1
4

a1 (38)

The general solution is

y(x)= a0 + a1 (x − 1)+

(

1
2

a0 +
1
2

a1

)

(x − 1)2 +

(

1
6

a0 +
1
2

a1

)

(x− 1)3 +

(

1
6

a0 +
1
4

a1

)

(x− 1)4 + 
 (39)

Collecting all the a0’s and the a1’s together we have

y(x) = a0

[

1 +
1

2
(x − 1)2 +

1

6
(x − 1)3 +

1

6
(x − 1)4 + 
 ] + a1

[

x − 1 +
1

2
(x − 1)2 +

1

2
(x − 1)3 +

1

4
(x −

1)4 + 
 ]. (40)

So

y1(x) = 1 +
1

2
(x− 1)2 +

1

6
(x − 1)3 +

1

6
(x− 1)4 + 
 (41)

y2(x) = x − 1+
1
2

(x− 1)2 +
1
2

(x − 1)3 +
1
4

(x− 1)4 + 
 (42)

b) The Wronskian at x0 is

det

(

y1(1) y2(1)

y1
′(1) y2

′(1)

)

=det

(

1 0
0 1

)

= 1� 0. (43)

So y1, y2 are linearly independent.

Problem 8. (5.2 15) Find the first five nonzero terms in the solution of the problem

y ′′− x y ′− y = 0, y(0) =2, y ′(0)= 1. (44)

Solution. Write

y =
∑

n=0

∞

an xn. (45)

Substitute into the equation:

0 =

(

∑

n=0

∞

an xn

)

′′

− x

(

∑

n=0

∞

an xn

)

′

−
(

∑

n=0

∞

an xn

)

(46)

=
∑

n=2

∞

n (n − 1) an xn−2− x
∑

n=1

∞

n an xn−1−
∑

n=0

∞

an xn (47)

=
∑

n=0

∞

(n + 2) (n + 1) an+2 xn −
∑

n=1

∞

n an xn −
∑

n=0

∞

an xn (48)

= 2 a2− a0 +
∑

n=1

∞

[(n + 2) (n + 1) an+2− (n + 1) an]xn. (49)

Thus the recurrence relations are

2 a2− a0 = 0, (50)

(n+ 2) an+2−an = 0. (51)

Now the initial conditions give

y(0) =2� a0 = 2; y ′(0)= 1� a1 = 1. (52)

We compute

(n= 0) a2 =
a0

2
= 1; (53)

(n= 1) a3 =
a1

3
=

1
3
; (54)

(n= 2) a4 =
a2

4
=

1

4
. (55)

We already have five nonzero terms:

y(x)= 2 +x + x2 +
1
3

x3 +
1
4

x4 +
 (56)
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Problem 9. (5.3 7) Determine a lower bound for the radius of convergence of series solutions about each given point

x0 for the differential equation
(

1 +x3
)

y ′′+ 4 x y ′+ 4 y = 0; x0 = 0, x0 = 2. (57)

Solution. Write the equation into standard form

y ′′+
4 x

1 +x3
y′ +

4

1+ x3
y =0. (58)

We see that the singular points are solutions to

x3 + 1= 0. (59)

or equivalently

x3 =− 1. (60)

To find all such x, we need to write − 1= R eiθ. Clearly R = 1. To determine θ we solve

cos θ =− 1, sinθ = 0 (61)

which gives θ = π + 2 k π. Thus the solutions are given by

x = e
i
2k+1

3
π
. (62)

Notice that k and k + 3 gives the same x. Therefore the three roots are given by setting k =0, 1, 2.

k = 0� x= e
i

π

3 =
1
2

+
3

√

2
i; k = 1� x=− 1; k = 2� x =

1
2
− 3

√

2
i. (63)

Now we discuss

• x0 = 0. The distance from 4 to the three roots are:
∣

∣

∣

∣

∣

0−
(

1
2

+
3

√

2
i

)∣

∣

∣

∣

∣

= 1 (64)

|0− (− 1)|= 1; (65)

∣

∣

∣

∣

∣

0−
(

1
2
− 3

√

2
i

)∣

∣

∣

∣

∣

= 1; (66)

The smallest distance is 1. So the radius of convergence is at least 1.

• x0 = 2. The distances are
∣

∣

∣

∣

∣

2−
(

1
2

+
3

√

2
i

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

3
2
− 3

√

2
i

∣

∣

∣

∣

∣

=
9
4

+
3
4

√

= 3
√

; (67)

|2− (− 1)| = 3; (68)
∣

∣

∣

∣

∣

2−
(

1

2
− 3

√

2
i

)∣

∣

∣

∣

∣

= 3
√

. (69)

The smallest distance is 3
√

. So the radius of convergence is 3
√

.

Problem 10. (5.3 12) Find the first four nonzero terms in each of two power series solutions about the origin for

ex y ′′+ x y = 0 (70)

Determine the lower bound of radius of convergence.

Solution. We write

y =
∑

n=0

∞

an xn (71)

and expand

ex =1 + x+
x2

2
+

x3

6
+ 
 =

∑

n=0

∞

xn

n!
. (72)

Substituting into the equation we have

0 =

(

∑

n=0

∞

xn

n!

)(

∑

n=0

∞

an xn

)

′′

+ x
∑

n=0

∞

an xn (73)

=

(

1 +x +
x2

2
+

x3

6
+ 
 )(2 a2 + 6 a3 x +12a4 x2 + 20a5 x3 + 
 )+ a0 x +a1 x2 + a2 x3 + 
 (74)

Note that in the above, we expand everything up to x3, hoping that the recurrence relations would give us the desired

four non-zero terms in both y1 and y2. If it turns out that this is not the case, we need to expand to higher order.

To make the calculation simpler, we notice that finally the solution is written as

y = a0 y1 + a1 y2. (75)
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Thus y1 is obtained by setting a0 = 1, a1 = 0 while y2 is obtained by setting a0 = 0, a1 = 1.

• Finding y1. Setting a0 = 1, a1 = 0 we have

(

1 + x+
x2

2
+

x3

6
+ 
 )(2 a2 + 6 a3 x + 12a4 x2 + 20a5 x3 + 
 )+ x + a2 x3 + 
 = 0 (76)

Carrying out the multiplication, we have

2 a2 + (2 a2 +6 a3 +1) x + (a2 + 6 a3 + 12a4) x2 +
(

a2

3
+ 3 a3 + 12a4 + 20a5 + a2

)

x3 + 
 =0. (77)

Thus we have

2 a2 = 0, (78)

2 a2 + 6 a3 + 1 = 0, (79)

a2 + 6 a3 + 12a4 = 0, (80)
a2

3
+3 a3 + 12a4 + 20a5 +a2 = 0. (81)

These give

a2 = 0, a3 =− 1
6
, a4 =

1
12

, a5 =− 1
40

. (82)

Thus

y1(x)= 1− 1
6

x3 +
1
12

x4− 1
40

x5 + 
 (83)

We are lucky that we have exactly four nonzero terms.

• Finding y2. Setting a0 = 1, a1 = 1 we have

(

1 +x +
x2

2
+

x3

6
+ 
 )(2 a2 + 6 a3 x +12a4 x2 + 20a5 x3 + 
 )+ x2 + a2 x3 + 
 = 0. (84)

Carrying out the multiplication, we have

2 a2 + (2 a2 +6 a3) x + (a2 + 6 a3 + 12a4 + 1) x2 +
(

a2

3
+ 3 a3 + 12a4 + 20a5 + a2

)

x3 + 
 =0. (85)

The recurrence relations are

2 a2 = 0, (86)

2 a2 + 6 a3 = 0, (87)

a2 + 6 a3 + 12a4 + 1 = 0, (88)
a2

3
+3 a3 + 12a4 + 20a5 +a2 = 0, (89)

which give

a2 = 0; a3 = 0; a4 =− 1

12
; a5 =

1

20
. (90)

Thus

y2 =x − 1
12

x4 +
1
20

x5 + 
 (91)

We only have 3 nonzero terms!

• Finding the 4th term.

To find the 4th term, we need to expand everything to higher power. Let’s try expanding to x4:

(

1+ x+
x2

2
+

x3

6
+

x4

24

 )(2 a2 + 6 a3 x + 12a4 x2 + 20a5 x3 + 30a6 x4
 )+ x2 +a2 x3 + a3 x4
 = 0. (92)

This gives a new recurrence relation via setting coefficients of x4 to be 0:

a2

12
+ a3 +6 a4 + 20a5 + 30a6 + a3 = 0. (93)

We obtain

a6 =− 1

60
. (94)

The updated y2 is now

y2(x)= x − 1
12

x4 +
1
20

x5− 1
60

x6 + 
 (95)

Now we have 4 nonzero terms.

To determine the lower bound of the radius of convergence, we need to find all z such that ez = 0, as the standard form

of our equation is

y ′′ +
x

ex
y = 0. (96)

Write z = α + i β. We have

ez = eα [cosβ + i sinβ]. (97)
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Thus

|ez|= eα� 0 (98)

for any real number α. Therefore ez is never zero and the equation does not have any singular point. Consequently the

radius of convergence is ∞.

Problem 11. (5.4 1) Find the general solution

x2 y ′′+ 4 x y′+ 2 y = 0. (99)

Solution. This is Euler equation. Set y = xr we reach

r (r − 1)+ 4 r + 2= 0� r1,2 =− 2,− 1. (100)

So the general solution is

y = C1x
−2 + C2 x−1. (101)

Problem 12. (5.4 19) Find all singular points of

x2 (1− x) y′′+ (x − 2) y′− 3 x y =0, (102)

and determine whether each one is regular or irregular.

Solution. Write the equation into standard form:

y ′′ +
x− 2

x2 (1− x)
y ′− 3

x (1− x)
y = 0. (103)

We see that there are two singular points x =0, x = 1.

• At x = 0, we have

x p =
x − 2

x (1− x)
, x2 q =− 3 x

1−x
. (104)

We see that x p is not analytic (still has singularity at 0). So x = 0 is an irregular singuar point.

• At x = 1, we have

(x− 1) p =
x − 2

x2
, (x − 1)2 q =

3 (1−x)
x

(105)

both are analytic at x = 1. So x = 1 is a regular singular point.

Intermediate Problems

Problem 13. (4.1 8) Determine whether the given set of functions is linearly dependent or linearly independent. If

they are linearly dependent, find a linear relation among them.

f1(t)= 2 t− 3, f2(t)= 2 t2 + 1, f3(t)= 3 t2 + t. (106)

(Note: As f1, f2, f3 are not solutions to some 3rd order equation, Wronskian � 0 implies linear independence, but Wron-

skian = 0 does not imply linear dependence. Finding a “linear relation” means finding constants C1, C2, C3 such that

C1 f1 + C2 f2 +C3 f3 = 0. (107)

)

Solution. We compute the Wronskian – if it � 0, the functions are linearly independent; If it = 0, we have to use other

methods to determine.

W =det







f1 f2 f3

f1
′ f2

′ f3
′

f1
′′ f2

′′ f3
′′






=det





2 t− 3 2 t2 + 1 3 t2 + t

2 4 t 6 t + 1
0 4 6



= 0. (108)

Unfortunately this does not guarantee linear dependence of f1, f2, f3. However, this indicates that we should try to show

linear dependence.

As an alternative method, we try to directly find C1, C2, C3 such that

C1 (2 t− 3) + C2
(

2 t2 + 1
)

+ C3
(

3 t2 + t
)

= 0. (109)

As the left hand side is a polynomial – special case of power series — the above is equivalent to that coefficients for 1, t,

t2 all vanish. We rewrite the above equation to

(− 3 C1 + C2)+ (2 C1 +C3) t + (2 C2 + 3 C3) t2 = 0. (110)

This gives

− 3 C1 +C2 = 0 (111)

2 C1 +C3 = 0 (112)

2 C2 + 3 C3 = 0. (113)
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Solving this system, we have

C2 = 3 C1, C3 =− 2 C1, C1 arbitrary (114)

So f1, f2, f3 are linearly dependent, a linear relation is given by

f1 + 3 f2− 2 f3 = 0. (115)

Problem 14. (4.2 11) Find the general solution of

y ′′′− y ′′− y ′+ y = 0. (116)

Solution. This is linear equation with constant coefficients. The characteristic equation is

r3− r2− r + 1= 0. (117)

Clearly r = 1 is a solution. Write

r3− r2− r +1 = (r − 1)
(

r2− 1
)

= (r − 1)2 (r +1). (118)

Therefore

r1,2 = 1; r3 =− 1. (119)

So the solution is given by

y = C1 et + C2 t et +C3 e−t. (120)

Problem 15. (4.2 16) Find the general solution of

y(4)− 5 y ′′+ 4 y = 0. (121)

Solution. The characteristic equation is

r4− 5 r2 +4 = 0. (122)

Notice that if we set R = r2, we have

R2− 5 R + 4= 0� R = 4, 1. (123)

So the four roots are

r1,2,3,4 =± 2,± 1. (124)

They are all different, so the general solution is given by

y(x)= C1 e2t + C2 e−2t +C3 et + C4 e−t. (125)

7


