Arc length and surface area

Example 1. Calculate the arc length of the space curve

$$x = \cos t, y = \sin t, z = t \tag{1}$$

for t from 0 to 2π .

Solution. We have

$$L = \int_0^{2\pi} \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt$$

=
$$\int_0^{2\pi} \sqrt{2} dt = 2\sqrt{2} \pi.$$
 (2)

Example 2. (CYCLOID) The trajectory of a unit circle rolling in the plane along a line.

Figure 1. The cycloids

We take $t = \theta$ as the parameter. We have $x(t) = (t - \sin t, 1 - \cos t)$ for $t \in [0, 2\pi]$. For its arc length, we have

$$L = \int_{0}^{2\pi} \sqrt{(1-\cos t)^{2} + (\sin t)^{2}} dt$$

$$= \int_{0}^{2\pi} \sqrt{2-2\cos t} dt$$

$$= \int_{0}^{2\pi} \sqrt{2-2\left(1-2\left(\sin\frac{t}{2}\right)^{2}\right)} dt$$

$$= 2\int_{0}^{2\pi} \left|\sin\left(\frac{t}{2}\right)\right| dt$$

$$= 8.$$
(3)

Example 3. Find the area of the part of z = xy that is inside $x^2 + y^2 = 1$.

Solution. We calculate

$$S = \int_{x^2 + y^2 \leqslant 1} \sqrt{1 + z_x^2 + z_y^2} \, d(x, y) = \frac{2\pi}{3} \left(2\sqrt{2} - 1 \right). \tag{4}$$

Example 4. Find the surface area of the sphere $x^2 + y^2 + z^2 = R^2$.

Solution. We use the parametrization

$$\sigma(\phi, \psi) = \begin{pmatrix} R\cos\phi\cos\psi \\ R\sin\phi\cos\psi \\ R\sin\psi \end{pmatrix}, \qquad U = \left\{ (\phi, \psi) | 0 < \phi < 2\pi, -\frac{\pi}{2} < \psi < \frac{\pi}{2} \right\}. \tag{5}$$

Then calculate

$$\sigma_{u} = \begin{pmatrix} -R\sin\phi\cos\psi \\ R\cos\phi\cos\psi \\ 0 \end{pmatrix}, \qquad \sigma_{v} = \begin{pmatrix} -R\cos\phi\sin\psi \\ -R\sin\phi\sin\psi \\ R\cos\psi \end{pmatrix}, \tag{6}$$

$$\|\sigma_u \times \sigma_v\| = R^2 \cos \psi. \tag{7}$$

$$S = \int_{U} R^{2} \cos \psi \, d(\phi, \psi) = 4 \pi R^{2}. \tag{8}$$

Line and surface integrals of the first kind

Line integral of the first kind

Let γ be the trace of a regular curve $x(t): [a,b] \mapsto \mathbb{R}^N$. Let $f: \gamma \mapsto \mathbb{R}$ be a continuous function. Then we can define the line integral of the first kind as

$$\int_{\gamma} f \, \mathrm{d}s := \int_{a}^{b} f(x(t)) \|x'(t)\| \, \mathrm{d}t. \tag{9}$$

Surface integral of the first kind

Let S be a C^1 surface parametrized through $\Phi(u, v): U \mapsto \mathbb{R}^3$. Let $f: S \mapsto \mathbb{R}$ be a continuous function. Then we can define the surface integral of the first kind as

$$\int_{S} f \, dS := \int_{U} f(\Phi(u, v)) \left\| \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v} \right\| du \, dv. \tag{10}$$

Examples

Example 5. Calculate $\int_{\gamma} x^2 ds$ where γ is the unit circle.

Solution. We parametrize γ as $(\cos t, \sin t)$ for $t \in [0, 2\pi]$. Then

$$\int_{\gamma} x^2 \, \mathrm{d}s = \int_0^{2\pi} (\cos t)^2 \, \mathrm{d}t = \pi. \tag{11}$$

Example 6. Calculate

$$\int_{S} z^2 \, \mathrm{d}S \tag{12}$$

where $S := \{(x, y, z) | x^2 + y^2 + z^2 = R^2 \}.$

Solution. We parametrize S:

$$r(\phi, \psi) = \begin{pmatrix} R\cos\phi\cos\psi \\ R\sin\phi\cos\psi \\ R\sin\psi \end{pmatrix}, \qquad D = \left\{ (\phi, \psi) | 0 \leqslant \phi \leqslant 2\pi, -\frac{\pi}{2} \leqslant \psi \leqslant \frac{\pi}{2} \right\}. \tag{13}$$

Then we have

$$r_{\phi} = R \begin{pmatrix} -\sin\phi\cos\psi \\ \cos\phi\cos\psi \\ 0 \end{pmatrix}, \qquad r_{\psi} = R \begin{pmatrix} -\cos\phi\sin\psi \\ -\sin\phi\sin\psi \\ \cos\psi \end{pmatrix}$$

$$\tag{14}$$

and

$$E = R^2 \cos^2 \psi, \quad F = 0, \quad G = R^2 \Longrightarrow \sqrt{EF - G^2} = R^2 |\cos \psi| = R^2 \cos \psi. \tag{15}$$

Note that the last equality follows from the fact that $-\frac{\pi}{2} \leqslant \psi \leqslant \frac{\pi}{2}$. Now we calculate

$$I = \int_{D} (R \sin \psi)^{2} R^{2} \cos \psi$$

$$= R^{4} \int_{D} (\sin \psi)^{2} \cos \psi \, d\psi$$

$$= R^{4} \int_{0}^{2\pi} \left[\int_{-\pi/2}^{\pi/2} (\sin \psi)^{2} \cos \psi \, d\psi \right] d\phi$$

$$= R^{4} \int_{0}^{2\pi} \left[\frac{(\sin \psi)^{3}}{3} \right]_{-\pi/2}^{\pi/2} d\phi$$

$$= R^{4} \int_{0}^{2\pi} \frac{2}{3} d\phi = \frac{4\pi R^{4}}{3}.$$
(16)

Remark 7. The calculation can be much simplified through the following trick:

By symmetry we see that

$$\int_{S} z^{2} dS = \frac{1}{3} \int_{S} (x^{2} + y^{2} + z^{2}) dS = \frac{1}{3} \int_{S} dS = \frac{4\pi}{3}.$$
 (17)

Remark 8. For more examples, please see my lecture notes for 2014 Math 317.