Hadamard's global inverse function theorem

THEOREM 1. (HADAMARD) Let $F: \mathbb{R}^N \mapsto \mathbb{R}^N$ be a C^2 mapping. Suppose that F(0) = 0 and that the Jacobian determinant of F is nonzero at each point. Further suppose that F is proper. Then F is one-to-one and onto.

Remark 2. (PROPER MAPPINGS) F is proper if whenever K is compact, so is $F^{-1}(K)$.

Exercise 1. show that there are discontinuous functions that are proper, and also continuous functions that are not proper. **Exercise 2.** Let $F: \mathbb{R}^N \to \mathbb{R}^N$ be continuous. Assume that whenever B is bounded, so is $F^{-1}(B)$. Prove or disprove: F is proper.

Proof. Define $H: \mathbb{R} \times \mathbb{R}^N \mapsto \mathbb{R}^N$ as

$$H(t,x) = \begin{cases} F(tx)/t & t > 0\\ DF(0)(x) + \frac{1}{2}D^2F(0)(x,x)t & t \le 0 \end{cases}$$
(1)

We notice the following.

 $H(0,x) = DF(0)(x), \qquad H(1,x) = F(x).$ (2)

Furthermore we have $H \in C^1$. For t > 0 we calculate

$$\frac{\partial H}{\partial x_i}(t,x) = \frac{\partial F}{\partial x_i}(t\,x), \qquad \frac{\partial H}{\partial t}(t,x) = \frac{DF(t\,x)(x)}{t} - \frac{F(t\,x)}{t^2}.$$
(3)

Applying Taylor's theorem, we have (recall that F(0) = 0)

$$\frac{\partial H}{\partial t}(t,x) = \frac{DF(tx)(x)}{t} - \frac{F(tx)}{t^2} \\
= \frac{1}{t^2} [DF(tx)(tx) - F(tx)] \\
= \frac{1}{t^2} \Big[(DF(0) + D^2F(0)(tx) + o(t))(tx) - \left(DF(0)(tx) + \frac{1}{2}D^2F(0)(tx,tx) + o(t^2) \right) \Big] \\
= \frac{1}{2}D^2F(0)(x,x) + o(1).$$
(4)

Thus $H \in C^1$.

By assumption H(0, x) is a bijection on \mathbb{R}^N . Let $y \in \mathbb{R}^N$ be arbitrary. We consider the set $C(y) := \{(t, x) | H(t, x) = y, t \ge 0\}$. As H(0, x) is a bijection, C(y) is not empty. Intuitively C(y) is a curve. All we need to show now is that this curve intersects the hyperplane t = 1. In the following we turn this idea into a rigorous argument.

Fix $\bar{y} \in \mathbb{R}^N$. Define

which gives

$$f(t,x) := H(t,x) - \bar{y}.$$
(5)

Let \bar{x} be such that $DF(0)(\bar{x}) = \bar{y}$. Let $C := \{(t, x) | f(t, x) = 0\}.$

I. C(y) is a union of closed C^1 curves.

Since $(0, \bar{x}) \in C$, C is nonempty. Now let $(t_0, x_0) \in C$ be arbitrary. We have

$$\frac{\partial f}{\partial x}(t_0, x_0) = J_F(t_0 \, x_0) \tag{6}$$

which is non-singular. By the implicit function theorem there is a $\varepsilon_0 > 0$ such that $C \cap B_{\varepsilon}((t_0, x_0))$ is of the form $x = \phi(t)$.

II. Each curve in C(y) intersects t = 1. Consequently $F: \mathbb{R}^N \mapsto \mathbb{R}^N$ is onto. Assume not. Then there is a plane $t = t_0$ such that $\phi(t) \longrightarrow \infty$ as $t \searrow t_0$ or $t \nearrow t_0$. But $f(t, \phi(t)) = \overline{y}$

$$F(t\phi(t)) = \bar{y}t \tag{7}$$

as $t \to t_0$, while $|\phi(t)| \to \infty$. But this implies $F^{-1}(\overline{B_r(\bar{y} t_0)})$ is unbounded for some finite r. This contradicts the asumption that F is proper.

III. $F: \mathbb{R}^N \mapsto \mathbb{R}^N$ is one-to-one.

Assume the contrary. Let $x_1, x_2 \in \mathbb{R}^N$ be such that $F(x_1) = F(x_2) = \bar{y}$, that is $H(1, x_1) = H(1, x_2) = \bar{y}$. Consider the two curves emanating from $(1, x_1)$ and $(1, x_2)$ whose existences are guaranteed by the implicit function theorem. Similar argument as above shows that the two curves much intersect t = 0. As DF(0) is nonsingular, the two curves must meet at the same point x_0 at t = 0. But this leads to a "pitchfork" bifurcation which is again prohibited by the implicit function theorem, applied at $(0, x_0)$ for the function f(t, x).

Thus ends the proof.