Example 1. Calculate y' and y'' at x=0 for the function implicitly defined through

$$x y - \ln y = 0. \tag{1}$$

Solution. First we see that, when x = 0, we have $\ln y = 0$ so y = 1. Thus all the calculation must be done at (0,1). Taking derivatives we have

$$y + xy' - \frac{y'}{y} = 0 \xrightarrow{x=0, y=1} y'(0) = 1.$$
 (2)

Taking derivative again we have

$$y' + y' + xy'' - \frac{y''}{y} + \frac{(y')^2}{y^2} = 0 \xrightarrow{x=0, y=1, y'=1} y''(0) = 3.$$
 (3)

Example 2. Calculate the formula of the Jacobian of (u, v) as implicitly defined function of (x, y) through

$$u^2 - v = 3x + y;$$
 $u - 2v^2 = x - 2y.$ (4)

Solution. We have

$$f(x, y, u, v) = \begin{pmatrix} u^2 - v - 3x - y \\ u - 2v^2 - x + 2y \end{pmatrix}.$$
 (5)

We calculate

$$\frac{\partial f}{\partial(x,y)} = \begin{pmatrix} -3 & -1 \\ -1 & 2 \end{pmatrix}, \qquad \frac{\partial f}{\partial(u,v)} = \begin{pmatrix} 2u & -1 \\ 1 & -4v \end{pmatrix}. \tag{6}$$

Therefore

$$\frac{\partial(u,v)}{\partial(x,y)} = -\begin{pmatrix} 2u & -1\\ 1 & -4v \end{pmatrix}^{-1} \begin{pmatrix} -3 & -1\\ -1 & 2 \end{pmatrix}
= \frac{1}{1-8uv} \begin{pmatrix} -4v & 1\\ -1 & 2u \end{pmatrix} \begin{pmatrix} -3 & -1\\ -1 & 2 \end{pmatrix}
= \frac{1}{1-8uv} \begin{pmatrix} 12v-1 & 4v+2\\ 3-2u & 1+4u \end{pmatrix}.$$
(7)

Remark 3. Notice that $f(0,0,u,v) = \begin{pmatrix} u^2 - v \\ u - 2v^2 \end{pmatrix}$. Setting this to $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ we have two solutions u = v = 0 and $u=2^{-1/3}$ and $v=2^{-2/3}$. Thus if we are talking about the implicit function defined near x=y=u=v=0, we have

$$J(0,0) = \begin{pmatrix} -1 & 2\\ 3 & 1 \end{pmatrix}; \tag{8}$$

But if we are talking about the implicit function defined near x = y = 0, $u = 2^{-1/3}$, $v = 2^{-2/3}$, then

$$J(0,0) = -\frac{1}{3} \begin{pmatrix} 12 \cdot 2^{-2/3} - 1 & 4 \cdot 2^{-2/3} + 2 \\ 3 - 2 \cdot 2^{-1/3} & 1 + 4 \cdot 2^{-1/3} \end{pmatrix}.$$
 (9)

Example 4. Let $l, m, n \in \mathbb{N}$ and $a, b, c, k \in \mathbb{R}$. Further assume that $a, b, c \neq 0$. Solve

$$\max x^l y^m z^n$$
 subject to $x^2 + y^2 + z^2 = 1$. (10)

Solution. We form the Lagrange function

$$\mathcal{L}(x, y, z, \lambda) := x^l y^m z^n + \lambda (x^2 + y^2 + z^2 - 1). \tag{11}$$

Taking partial derivatives we have

$$\frac{\partial \mathcal{L}}{\partial x} = l x^{l-1} y^m z^n + 2 \lambda x; \tag{12}$$

$$\frac{\partial \mathcal{L}}{\partial x} = l x^{l-1} y^m z^n + 2 \lambda x; \tag{12}$$

$$\frac{\partial \mathcal{L}}{\partial y} = m x^l y^{m-1} z^n + 2 \lambda y; \tag{13}$$

$$\frac{\partial \mathcal{L}}{\partial z} = n x^l y^m z^{n-1} + 2 \lambda z. \tag{14}$$

$$\frac{\partial \hat{\mathcal{L}}}{\partial z} = n x^l y^m z^{n-1} + 2 \lambda z. \tag{14}$$

Setting them to zero we have

$$-2\lambda = l x^{l-2} y^m z^n = m x^l y^{m-2} z^n = n x^l y^m z^{n-2}.$$
 (15)

Dividing (15) by $x^l y^m z^n$ we see that

$$\frac{l}{x^2} = \frac{m}{y^2} = \frac{n}{z^2}. (16)$$

Together with $x^2 + y^2 + z^2 = 1$ we have

$$x = \left(\frac{l}{l+m+n}\right)^{1/2}, \quad y = \left(\frac{m}{l+m+n}\right)^{1/2}, \quad z = \left(\frac{n}{l+m+n}\right)^{1/2}$$
 (17)

and the maximum is given by

$$\left[\frac{l^l m^m n^n}{(l+m+n)^{l+m+n}}\right]. \tag{18}$$