
f¡1:W 7!V is a C1 function.

We have already proved the existence of open sets V ;W such that f :V 7!W is injective and surjective. Thus
the inverse function f¡1:W 7!V is well-de�ned. In the following we present two proofs of its di�erentiability.

Proof 1: Direct proof of total di�erentiability.
Let y02W be arbitrary. Let x0 := f¡1(y0). The goal is to show

lim
y¡!y0;y=/ y0



f¡1(y)¡ f¡1(y0)¡ Jf¡1(x0) (y¡ y0)




ky¡ y0k
=0: (1)

Setting x := f¡1(y) we can re-write this as

lim
y¡!y0;y=/ y0

kx¡x0k
ky¡ y0k



x¡x0¡ Jf¡1(x0) (f(x)¡ f(x0))




kx¡x0k
=0: (2)

(2) clearly follows from the following.

lim
y¡!y0;y=/ y0



Jf¡1(x0)

 kx¡x0kky¡ y0k
kf(x)¡ f(x0)¡ Jf(x0) (x¡x0)k

kx¡x0k
=0: (3)

As Jf
¡1(x0) is a constant matrix, independent of y, we only need to show

lim
y¡!y0;y=/ y0

kx¡x0k
ky¡ y0k

kf(x)¡ f(x0)¡Jf(x0) (x¡x0)k
kx¡x0k

=0 (4)

where keep in mind that x := f¡1(y) and x0 := f¡1(y0).
Since

lim
x!x0;x=/ x0

kf(x)¡ f(x0)¡ Jf(x0) (x¡x0)k
kx¡x0k

=0: (5)

it su�ces to prove the following:

9"> 0; C > 0
kx¡x0k
ky¡ y0k

=
kx¡x0k

kf(x)¡ f(x0)k
6C for all y 2B"(y0); y=/ y0: (6)

We now prove (6). Notice that

kx¡x0k= kJf(x0)¡1Jf(x0) (x¡x0)k6 kJf(x0)¡1k kJf(x0) (x¡x0)k: (7)

Setting C := 2 kJf(x0)¡1k, we have

kx¡x0k6 C
2
kJf(x0) (x¡x0)k: (8)

We note that

kJf(x0) (x¡x0)k 6 kf(x)¡ f(x0)k+ kf(x)¡ f(x0)¡ Jf(x0) (x¡x0)k
= ky¡ y0k+ kf(x)¡ f(x0)¡ Jf(x0) (x¡x0)k: (9)

Now thanks to (5), there is r > 0 such that whenever x~2Br(x0), there holds

kf(x~)¡ f(x0)¡Jf(x0) (x~¡x0)k<
1
C
kx~¡x0k: (10)

Recalling that f(Br(x0)) is open, there is " > 0 such that B"(y0)� f(Br(x0)). For every y 2B"(y0); y=/ y0,
following (8�10), we conclude

kx¡x0k 6
C
2

�
ky¡ y0k+

1
C
kx¡x0k

�
=

C
2
kf(x)¡ f(x0)k+

1
2
kx¡x0k; (11)

and (6) follows.

Proof 2: Detour proof through partial derivatives.



We have shown that there are bounded open sets V ;W such that f :V 7!W has an inverse function f¡1:
W 7!V .

Now let y02W . Take ">0 such that B"(y0)�W . In the following we denote x= f¡1(y) and x0= f¡1(y0).
Then we have

f(x)¡ f(x0) = f(f¡1(y))¡ f(f¡1(y0))= y¡ y0: (12)

Application of mean value theorem to every fi, we see that

J~ � (f¡1(y)¡ f¡1(y0))= y¡ y0 (13)

where

J~=

�
@fi
@xj

(�i)

�
(14)

with every �i lying on the line segment connecting x= f¡1(y) and x0= f¡1(y0).
As f 2 C1, by taking " small enough we can guarantee the existence of a constant C > 0 such that

J~¡1

<C independent of the points �1; :::; �N. Consequently

y¡! y0=) f¡1(y)¡! f¡1(y0)=) J~¡!Jf(x0): (15)

Now take y= y0+ � ei and let �¡! 0, we see that all the partial derivatives exist for f¡1 and furthermore

Jf¡1(y0)= Jf(x0)
¡1: (16)

By arbitrariness of y0 we have

Jf¡1(y)= Jf(f¡1(y))¡1 (17)

for all y 2W . As Jf and f¡1 are both continuous, Jg(y) is continuous. Consequently g is di�erentiable.

Exercise 1. Prove the following.

a) Let ?=/ U �RN be open, let M >N , and let f 2C1(U ;RM) be such that rankJf(x) =N for all x2U . Then f is
locally injective on U .

b) If �rankJf(x)=N for all x2U� is replaced by rankJf(x0)=N , then there is V �x0 such that f is injective on V .

c) Let ?=/ U �RN be open, letM 6N , and let f 2C1(U ;RM) with rankJf(x)=M for all x2U . Then f(U) is open.

Exercise 2. Prove that if f 2Ck for some k > 1, then f¡12Ck for the same k.

Proof of the implicit function theorem.
Let ? =/ U � RM+N be open, let f 2 C1(U ; RN), and let (x0; y0) 2 U be such that f(x0; y0) = 0 and
det@f

@y
(x0; y0)=/ 0.

We de�ne

F :RM �U 7!RM+N ; F (x; y) :=

�
x

f(x; y)

�
: (18)

Simple calculation gives

JF(x0; y0)=

 
IM 0

@f

@x
(x0; y0)

@f

@y
(x0; y0)

!
(19)

which gives

det JF(x0; y0)= det
@f
@y
(x0; y0): (20)

It is clear that F 2C1(RM �U ;RM+N).
Thus by Theorem ? there is an open set S �RM � U such that (x0; y0) 2 S, T := F (S) is open, and F

has a C1 inverse function G:T 7!S. Checking the proof of Theorem ? we see that S can be taken as V �W
where V �RM ;W �RN are open sets with x02V ; y02W .

Now denote

G(z)=

0@ g1(z)
���

gM+N(z)

1Awhere z 2RM+N (21)



and de�ne

�(x) =

0@ gM+1(x; 0)
���

gM+N(x; 0)

1A: (22)

Note that as (x0;0)=F (x0; y0)2T , the set fx2V j (x; 0)2T g is open. We now replace V by this set to make
� well-de�ned on V .

It is clear that � 2 C1(V ; W ) and furthermore J�(x) = ¡
�
@f

@y

�¡1 � @f

@x

�
. All we need to show now is

f(x; �(x))= 0.
We have �

x
f(x; �(x))

�
=F (x; �(x))=F (x1; :::; xM ; gM+1(x; 0); :::; gM+N(x; 0)): (23)

All we need to show now is that gi(x; 0)=xi, i=1; 2; :::; M . Let G(x; 0)=
�
x0

y 0

�
. Then we have�

x0

f(x0; y 0)

�
=F (x0; y 0)=F (G(x; 0))=

�
x
0

�
: (24)

We see that necessarily x0=x. Consequently

F (x1; :::; xM ; gM+1(x; 0); :::; gM+N(x; 0))=F (G(x; 0))=

�
x
0

�
(25)

and it follows from (23) that f(x; �(x))= 0.
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