PROOF OF THE GENERAL CASE

• Based on Volker's notes §5.2, §5.3.

The plan.

We will prove the following results.

THEOREM 1. (INVERSE FUNCTION THEOREM) Let $\emptyset \neq U \subset \mathbb{R}^N$ be open, let $f \in C^1(U, \mathbb{R}^N)$, and let $x_0 \in U$ be such that det $J_f(x_0) \neq 0$. Then there is an open neighborhood $V \subseteq U$ of x_0 such that f is injective on V, f(V) is open, and f^{-1} : $f(V) \mapsto \mathbb{R}^N$ is a C^1 function such that $J_{f^{-1}} = J_f^{-1}$.

THEOREM 2. (IMPLICIT FUNCTION THEOREM) Let $\emptyset \neq U \subseteq \mathbb{R}^{M+N}$ be open, let $f \in C^1(U, \mathbb{R}^N)$, and let $(x_0, y_0) \in U$ be such that $f(x_0, y_0) = 0$ and $\det \frac{\partial f}{\partial y}(x_0, y_0) \neq 0$. Then there are neighborhoods $V \subseteq \mathbb{R}^M$ of x_0 and $W \subseteq \mathbb{R}^N$ of y_0 with $V \times W \subseteq U$ and a unique $\emptyset \in C^1(V, \mathbb{R}^N)$ such that

i. $\phi(x_0) = y_0$, and

ii. f(x, y) = 0 if and only if $\phi(x) = y$ for all $(x, y) \in V \times W$.

Moreover, we have

$$J_{\phi} = -\left(\frac{\partial f}{\partial y}\right)^{-1} \frac{\partial f}{\partial x}.$$
(1)

We will prove these results through the following steps.

- 1. We prove Theorem 1 first, in three steps.
 - Let $\emptyset \neq U \subset \mathbb{R}^N$ be open, let $f \in C^1(U, \mathbb{R}^N)$, and let $x_0 \in U$ be such that det $J_f(x_0) \neq 0$.
 - i. There is $V \subseteq U$ such that f is injective on V.
 - ii. W := f(V) is open.
 - iii. $f^{-1}: W \mapsto V$ is a C^1 function.
- 2. Next we prove Theorem 2 as a corollary of Theorem 1.

Remark 3. The necessity of the conditions det $J_f(x_0) \neq 0$ and det $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$ can be easily understood through the special case where f is a linear function. On the other hand, the assumption that $f \in C^1$ is more of a technical nature.

Proof of the inverse function theorem

In this section we prove Theorem 1. Let $\emptyset \neq U \subset \mathbb{R}^N$ be open, let $f \in C^1(U, \mathbb{R}^N)$, and let $x_0 \in U$ be such that det $J_f(x_0) \neq 0$.

There is $V \subseteq U$ such that f is injective on V.

As $f \in C^1$, for any $1 \leq i, j \leq N$, $\frac{\partial f_i}{\partial x_j}$ is a continuous function on U. Thus there is r > 0 such that for any N^2 points $x_{11}, x_{12}, ..., x_{NN} \in B_r(x_0)$, the matrix $\left(\begin{array}{c} \frac{\partial f_i}{\partial x_j}(x_{ij}) \end{array}\right)$ is nonsingular.

Take $V := B_r(x_0)$. Let $x, y \in V$ be arbitrary. We apply the mean value theorem for the functions

$$g_i(t) := f_i(x + t(y - x))$$
(2)

and obtain

$$f_i(y) - f_i(x) = g_i(1) - g_i(0) = [\text{grad } f(\xi_i)] \cdot (y - x)$$
(3)

where $\xi_i = x + t_i (y - x)$ for some $t_i \in [0, 1]$. Thus we see that

$$f(y) - f(x) = J \cdot (y - x) \tag{4}$$

where \tilde{J} is an $N \times N$ matrix whose (i, j) entry is $\left(\frac{\partial f_i}{\partial x_j}(\xi_i)\right)$.

As $\xi_i \in V$ for i = 1, 2, ..., N, the matrix \tilde{J} is non-singular. Consequently $y \neq x \Longrightarrow f(y) \neq f(x)$. We have proved injectivity of f on V.

Remark 4. Note that for $f: \mathbb{R}^M \mapsto \mathbb{R}^N$, there does not hold a "mean value theorem" of the form

$$f(y) - f(x) = J_f(\xi) \cdot (y - x) \tag{5}$$

for some ξ "between" x and y, unless N = 1.

Remark 5. Considering $f(x) = \frac{x}{2} + x^2 \sin \frac{1}{x}$ we see that it is not sufficient to assume only differentiability of f.

W := f(V) is open.

Let $x_0 \in V$ and $y_0 = f(x_0)$. We try to show that there is $\varepsilon > 0$ such that $B_{\varepsilon}(y_0) \subseteq W$. Let r > 0 be such that $B_r[x_0] := \overline{B_r(x_0)} \subset V$. As f is injective, there holds

$$y_0 \notin f(\partial B_r(x_0)). \tag{6}$$

Furthermore as f is continuous, $f(\partial B_r(x_0))$ is compact. Consequently

$$\varepsilon := \frac{1}{3} \inf_{z \in f(\partial B_r(x_0))} \|y_0 - z\| > 0.$$
⁽⁷⁾

We claim that $B_{\varepsilon}(y_0) \subseteq W$.

To see this, take any $y \in B_{\varepsilon}(y_0)$ and consider the optimization problem

$$\min_{x \in B_r[x_0]} g(x) := \|f(x) - y\|^2.$$
(8)

As g is continuous, the minimum is attained, either inside $B_r(x_0)$, or on $\partial B_r(x_0)$.

We see that $g(x_0) \leq \varepsilon$ while on the other hand,

$$\forall x \in \partial B_r(x_0), \qquad g(x) = \|f(x) - y\| \ge \|f(x) - y_0\| - \|y - y_0\| \ge 2\varepsilon.$$
(9)

Therefore the minimum is not attained on $\partial B_r(x_0)$.

Let \tilde{x} be a minimizer. We see that $\tilde{x} \in B_r(x_0)$, consequently

$$0 = \nabla g(\tilde{x}) = 2 J_f(x) \cdot (f(\tilde{x}) - y). \tag{10}$$

We recall that V is chosen such that for any N^2 points $x_{11}, x_{12}, ..., x_{NN} \in V$, the matrix $\left(\frac{\partial f_i}{\partial x_j}(x_{ij})\right)$ is non-singular. In particular $J_f(x)$ is non-singular. Consequently $f(\tilde{x}) = y$. As y is arbitrary, we see that $B_{\varepsilon}(y_0) \subseteq W$.