PROOF OF THE IMPLICIT FUNCTION THEOREM: $f: \mathbb{R}^2 \mapsto \mathbb{R}$.

In this lecture we explore how to prove the following result:

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a C^k , $k \ge 1$, function such that $f(x_0, y_0) = 0$. Further assume that $\frac{\partial f}{\partial y}(x_0, y_0) \ne 0$. Then there is $\delta > 0$ and a function $Y: (x_0 - \delta, x_0 + \delta)$ such that

i.
$$f(x, Y(x)) = 0$$
 for all $x \in (x_0 - \delta, x_0 + \delta)$;

ii. Y(x) is C^k .

We first note that

- No generality is lost by assuming $x_0 = y_0 = 0$;
- No generality is lost by further assuming $\frac{\partial f}{\partial u}(0,0) = 1$.

Thus in the following we will proceed under these assumptions.

Proof of the result when $k \ge 2$.

We first present a simple proof under the stronger assumption that f is C^k for some $k \ge 2$.

• Define

$$G(x, y) = -\left(\frac{\partial f}{\partial y}\right)^{-1} \left(\frac{\partial f}{\partial x}\right). \tag{1}$$

As $\frac{\partial f}{\partial y}(0,0) = 1$ and $f \in C^2$, there is $\delta_1 > 0$ such that

$$\frac{\partial f}{\partial y}(x,y) \in \left(\frac{1}{2},\frac{3}{2}\right), \qquad (x,y) \in I_1 := (-\delta_1,\delta_1) \times (-\delta_1,\delta_1). \tag{2}$$

- As a consequence, we have $G(x, y) \in C^1$ on the same interval I_1 . In particular, G(x, y) is Lipschitz with respect to the variable y.
- Now consider the first order differential equation

$$y' = G(x, y), \qquad y(0) = 0.$$
 (3)

By the existence/uniqueness theorem of ODEs, there is a unique solution Y(x) defined on $(-\delta_1, \delta_1)$.

• We have

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x,Y(x)) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}Y' = 0 \tag{4}$$

for all $x \in (-\delta_1, \delta_1)$. Together with f(0, Y(0)) = 0 this shows f(x, Y(x)) = 0 for all $x \in (-\delta_1, \delta_1)$.

- By the theory of ODEs, we know that $Y \in C^1$. Together with $G(x, y) \in C^1$ we see that $Y' = G(x, Y(x)) \in C^1$, consequently $Y \in C^2$.
- Now it is easy to show that $Y \in C^k$, if k > 2. For example, when k = 3 we have $G(x, y) \in C^2$ and

$$Y'' = \frac{\partial G}{\partial x} + \frac{\partial G}{\partial y} Y' \in C^1 \Longrightarrow Y \in C^3.$$
(5)

Exercise 1. Prove for general k by induction.

QUESTION 1. Would this approach work if k = 1? In this case we have G(x, y) merely continuous. Theory of ODEs only gives existence of Y but not uniqueness. Is this

Proof of the result when k = 1.

Now we assume that f is only C^1 .

• The plan is as follows. We try to find $\delta_1, \delta_2 > 0$ such that

$$f(x,\delta_2) > 0, \qquad f(x,\delta_2) < 0 \qquad \text{for all } x \in (-\delta_1,\delta_1).$$
(6)

By the intermediate value theorem for the function $f(x, \cdot)$ we have the existence of $y \in (-\delta_2, \delta_2)$ such that f(x, y) = 0. The proof ends after we further show the uniqueness of such y and that if we define Y = y, the function Y is C^1 .

• Proof of (6). Due to the continuity of $\frac{\partial f}{\partial y}$, there is $\delta_2 > 0$ such that

$$\frac{\partial f}{\partial y}(x, y) \in \left(\frac{1}{2}, \frac{3}{2}\right), \qquad -\delta_2 < x, y < \delta_2. \tag{7}$$

Now denote

$$M := \sup_{-\delta_2 < x, \, y < \delta_2} \left| \frac{\partial f}{\partial x}(x, \, y) \right|. \tag{8}$$

We set

$$\delta_1 := \frac{\delta_2}{4M}.\tag{9}$$

Then for any $x_0 \in (-\delta_1, \delta_1)$, we have

$$f(x_0, \delta_2) = f(x_0, \delta_2) - f(x_0, 0) + f(x_0, 0) - f(0, 0)$$

$$= \int_0^{\delta_2} \frac{\partial f}{\partial y}(x_0, y) \, \mathrm{d}y + \int_0^{x_0} \frac{\partial f}{\partial x}(x, 0) \, \mathrm{d}x$$

$$\geqslant \int_0^{\delta_2} \frac{\partial f}{\partial y}(x_0, y) \, \mathrm{d}y - \int_0^{x_0} \left| \frac{\partial f}{\partial x}(x, 0) \right| \, \mathrm{d}x$$

$$> \int_0^{\delta_2} \frac{\mathrm{d}y}{2} - \int_0^{\delta_1} M \, \mathrm{d}x$$

$$= \frac{\delta_2}{2} - \frac{\delta_2}{4M} M = \frac{\delta_2}{4} > 0.$$
(10)

Similarly we can prove

$$f(x_0, -\delta_1) < 0.$$
 (11)

By the intermediate value theorem we see that for every $x \in (-\delta_1, \delta_1)$ there is at least one $y \in (-\delta_2, \delta_2)$ such that f(x, y) = 0.

• Uniqueness of the intermediate value. Assume for some $x_0 \in (-\delta_1, \delta_1)$ there are $-\delta_2 < y_{01} < y_{02} < \delta_2$ such that $f(x_0, y_{01}) = f(x_0, y_{02}) = 0$, then by the mean value theorem there is $y_0 \in [y_{01}, y_{02}]$ such that

$$\frac{\partial f}{\partial y}(x_0, y_0) = 0. \tag{12}$$

Contradiction.

• $Y \in C^1$. We have f(x, Y(x)) = 0 for all $x \in (-\delta_1, \delta_1)$. Let $x_0 \in (-\delta_1, \delta_1)$ be arbitrary. Let $x \in (-\delta_1, \delta_1)$ be arbitrary. Define

$$g(t) := f((1-t)x_0 + tx, (1-t)Y(x_0) + tY(x)).$$
(13)

By the mean value theorem we have

$$0 = f(x, Y(x)) - f(x_0, Y(x_0)) = g(1) - g(0) = g'(c) = \frac{\partial f}{\partial x} (x_c, y_c) (x - x_0) + \frac{\partial f}{\partial y} (x_c, y_c) (Y(x) - Y(x_0))$$
(14)

where $x_c := (1-c) x_0 + c x, y_c := (1-c) Y(x_0) + c Y(x)$. This gives

$$\frac{Y(x) - Y(x_0)}{x - x_0} = -\left[\frac{\partial f}{\partial y}(x_c, y_c)\right]^{-1} \frac{\partial f}{\partial x}(x_c, y_c).$$
(15)

As $f \in C^1$, and $c \in [0, 1]$, we have

$$\lim_{x \to x_0} \left[\frac{\partial f}{\partial y}(x_c, y_c) \right]^{-1} \frac{\partial f}{\partial x}(x_c, y_c) = \left[\frac{\partial f}{\partial y}(x_0, Y(x_0)) \right]^{-1} \frac{\partial f}{\partial x}(x_0, Y(x_0)).$$
(16)

As a consequence Y is differentiable and satisfies

$$Y'(x) = \left[\frac{\partial f}{\partial y}(x, Y(x))\right]^{-1} \frac{\partial f}{\partial x}(x, Y(x)), \qquad x \in (-\delta_1, \delta_1).$$
(17)

By the differentiability of Y we have its continuity, together with $f \in C^1$ we conclude that the right hand side of (17) is continuous. Therefore Y' is continuous and $Y \in C^1$.

Exercise 2. Obtain a similar proof for the implicit function theorem for the equation $f(x_1, x_2, ..., x_M, y) = 0$.