
Proof of the Implicit Function Theorem: f :R2 7!R.

In this lecture we explore how to prove the following result:

Let f : R2 7! R be a Ck, k > 1, function such that f(x0; y0) = 0. Further assume that
@f

@y
(x0; y0)=/ 0. Then there is � > 0 and a function Y : (x0¡ �; x0+ �) such that

i. f(x; Y (x))= 0 for all x2 (x0¡ �; x0+ �);

ii. Y (x) is Ck.

We �rst note that

� No generality is lost by assuming x0= y0=0;

� No generality is lost by further assuming @f

@y
(0; 0)=1.

Thus in the following we will proceed under these assumptions.

Proof of the result when k> 2.
We �rst present a simple proof under the stronger assumption that f is Ck for some k> 2.
� De�ne

G(x; y)=¡
�
@f
@y

�¡1� @f
@x

�
: (1)

As @f

@y
(0; 0)=1 and f 2C2, there is �1> 0 such that

@f

@y
(x; y)2

�
1

2
;
3

2

�
; (x; y)2 I1 := (¡�1; �1)� (¡�1; �1): (2)

� As a consequence, we have G(x; y) 2 C1 on the same interval I1. In particular, G(x; y) is Lipschitz
with respect to the variable y.

� Now consider the �rst order di�erential equation

y 0=G(x; y); y(0)=0: (3)

By the existence/uniqueness theorem of ODEs, there is a unique solution Y (x) de�ned on (¡�1; �1).
� We have

d
dx

f(x; Y (x)) =
@f
@x

+
@f
@y

Y 0=0 (4)

for all x2 (¡�1; �1). Together with f(0; Y (0))= 0 this shows f(x; Y (x))= 0 for all x2 (¡�1; �1).
� By the theory of ODEs, we know that Y 2 C1. Together with G(x; y) 2 C1 we see that Y 0 = G(x;

Y (x))2C1, consequently Y 2C2.

� Now it is easy to show that Y 2Ck, if k > 2. For example, when k=3 we have G(x; y)2C2 and

Y 00=
@G
@x

+
@G
@y

Y 02C1=)Y 2C3: (5)

Exercise 1. Prove for general k by induction.

Question 1. Would this approach work if k = 1? In this case we have G(x; y) merely continuous. Theory
of ODEs only gives existence of Y but not uniqueness. Is this

Proof of the result when k=1.
Now we assume that f is only C1.

� The plan is as follows. We try to �nd �1; �2> 0 such that

f(x; �2)> 0; f(x; �2)< 0 for all x2 (¡�1; �1): (6)



By the intermediate value theorem for the function f(x; �) we have the existence of y2 (¡�2; �2) such
that f(x; y)=0. The proof ends after we further show the uniqueness of such y and that if we de�ne
Y = y, the function Y is C1.

� Proof of (6). Due to the continuity of @f
@y
, there is �2> 0 such that

@f
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(x; y)2
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�
; ¡ �2<x; y < �2: (7)

Now denote

M := sup
¡�2<x;y<�2

���� @f@x(x; y)
����: (8)

We set

�1 :=
�2
4M

: (9)

Then for any x02 (¡�1; �1), we have

f(x0; �2) = f(x0; �2)¡ f(x0; 0)+ f(x0; 0)¡ f(0; 0)

=

Z
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>
Z
0

�2 @f

@y
(x0; y) dy¡

Z
0

x0
���� @f@x(x; 0)

���� dx
>

Z
0

�2 dy
2
¡

Z
0

�1

M dx

=
�2
2
¡ �2
4M

M =
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4
> 0: (10)

Similarly we can prove

f(x0;¡�1)< 0: (11)

By the intermediate value theorem we see that for every x2 (¡�1; �1) there is at least one y2 (¡�2; �2)
such that f(x; y)= 0.

� Uniqueness of the intermediate value. Assume for some x0 2 (¡�1; �1) there are ¡�2< y01< y02< �2
such that f(x0; y01)= f(x0; y02)=0, then by the mean value theorem there is y02 [y01; y02] such that

@f
@y
(x0; y0)= 0: (12)

Contradiction.

� Y 2C1. We have f(x; Y (x))=0 for all x2 (¡�1; �1). Let x02 (¡�1; �1) be arbitrary. Let x2 (¡�1; �1)
be arbitrary. De�ne

g(t) := f((1¡ t)x0+ t x; (1¡ t)Y (x0) + t Y (x)): (13)

By the mean value theorem we have

0 = f(x; Y (x))¡ f(x0; Y (x0))

= g(1)¡ g(0)

= g 0(c)

=
@f

@x
(xc; yc) (x¡x0)+

@f

@y
(xc; yc) (Y (x)¡Y (x0)) (14)

where xc := (1¡ c)x0+ c x; yc := (1¡ c)Y (x0)+ c Y (x). This gives

Y (x)¡Y (x0)
x¡x0

=¡
�
@f

@y
(xc; yc)

�¡1 @f
@x
(xc; yc): (15)

As f 2C1, and c2 [0; 1], we have

lim
x¡!x0

�
@f

@y
(xc; yc)

�¡1 @f
@x
(xc; yc)=

�
@f

@y
(x0; Y (x0))

�¡1 @f
@x
(x0; Y (x0)): (16)



As a consequence Y is di�erentiable and satis�es

Y 0(x)=

�
@f
@y
(x; Y (x))

�¡1 @f
@x
(x; Y (x)); x2 (¡�1; �1): (17)

By the di�erentiability of Y we have its continuity, together with f 2C1 we conclude that the right
hand side of (17) is continuous. Therefore Y 0 is continuous and Y 2C1.

Exercise 2. Obtain a similar proof for the implicit function theorem for the equation f(x1; x2; :::; xM ; y) = 0.
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