PrRooF oF THE IMPLICIT FUNCTION THEOREM: f:IR?+— IR.

In this lecture we explore how to prove the following result:

Let f: R?2+ R be a C¥, k > 1, function such that f(xq, yo) = 0. Further assume that
g—i(wo, yo) # 0. Then there is 6 >0 and a function Y: (zo — 0, 2o+ J) such that

i f(z,Y(z))=0 for all z € (xg— 4,20+ 9);
i, Y(z) is CF.

We first note that

No generality is lost by assuming x¢ = yo=0;

No generality is lost by further assuming 2—5(0, 0)=1.

Thus in the following we will proceed under these assumptions.

Proof of the result when k > 2.

We first present a simple proof under the stronger assumption that f is C* for some k > 2.

Define
—1
6 =-(2) " (£) )
As 2—5(0, 0)=1 and f € C?, there is §; >0 such that
%f(xu y)e<%7g>7 ($7 y)EIl = (_51761) X (_51761)' (2)

As a consequence, we have G(z, y) € C! on the same interval I;. In particular, G(x, y) is Lipschitz
with respect to the variable y.

Now consider the first order differential equation
y'=G(z,y),  y(0)=0. (3)
By the existence/uniqueness theorem of ODEs, there is a unique solution Y (z) defined on (—d1,d1).

We have

feven=gL+dy—o (4)

for all « € (—d1,d1). Together with f(0,Y(0)) =0 this shows f(z, Y (z))=0 for all x € (=61, 61).

By the theory of ODEs, we know that Y € C!. Together with G(z, y) € C! we see that Y/ = G(x,
Y (z)) € C!, consequently Y € C2.

Now it is easy to show that Y € C¥, if k> 2. For example, when k=3 we have G(z, y) € C? and
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Y'eCl=YeC3 (5)

Exercise 1. Prove for general k£ by induction.

QUESTION 1. Would this approach work if k=12 In this case we have G(x, y) merely continuous. Theory
of ODEs only gives existence of Y but not uniqueness. Is this

Proof of the result when k=1.

Now we assume that f is only C'.

The plan is as follows. We try to find d1, d2 > 0 such that
f(ZL’, 52) >0, f(SC, 62) <0 for all x € (—61, 51) (6)



By the intermediate value theorem for the function f(z,-) we have the existence of y € (—d2, d2) such
that f(x,y)=0. The proof ends after we further show the uniqueness of such y and that if we define
Y =y, the function Y is C.

Proof of (6). Due to the continuity of g_j;’ there is 92 > 0 such that

a_f(fcay)e l7§ ) — o< x, Yy <. (7)
dy 272
Now denote
0
M= s By ®)
—02<T,y<d2 O0x
We set
_ 02
= r (9)

Then for any zg € (—d1, 41), we have

f(xO, 52) = f(xov 52) - f(‘TOa O) + f(LE(), 0) - f(ov 0)
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= 2_ %2 22
=3 4MM 1 > 0. (10)
Similarly we can prove
f(wo, —61) <0. (11)

By the intermediate value theorem we see that for every x € (—d1,d1) there is at least one y € (—da, d2)
such that f(z,y)=0.

Uniqueness of the intermediate value. Assume for some g € (—4d1, d1) there are —d2 < yo1 < Yoz < 2
such that f(zo, yo1) = f(x0, yo2) =0, then by the mean value theorem there is yo € [yo1, yo2] such that

%(fﬂoa Yo) =0. (12)

Contradiction.

Y €Cl. We have f(x,Y (z))=0 for all z € (—d1,61). Let zo€ (—d1,01) be arbitrary. Let o € (=61, 1)
be arbitrary. Define

g(t):=f(1=t)zo+tz, (1 —1t)Y(xo) +tY(2)). (13)

By the mean value theorem we have

0 = f(z,Y(x)— f(zo,Y (x0))
= g(1)—g(0)
= %’(c) 5
= L) (o —20)+ 51 o) (V) =Y (20) 1)
where zc:= (1 —c)zo+cx, ye:= (1 —¢) Y(z0) + ¢ Y (z). This gives
Y(z)-Y(z0) _ [Of —tof
x_—xoo_—[@(fﬂc,yc)} %(wmyc)' (15)

As feC?, and c€[0,1], we have

. of -1 af _ of -1 of
wh;n%[@(wmya} %umyc)—[@(wmwxo))] 9 (a0, ¥ (z). (16)



As a consequence Y is differentiable and satisfies

y/(x):[%f(x,nx))]1%(:571/(:5)), 2 € (=51, 61). (17)

By the differentiability of Y~ we have its continuity, together with f € C'* we conclude that the right
hand side of (17) is continuous. Therefore Y is continuous and Y € C'*.

Exercise 2. Obtain a similar proof for the implicit function theorem for the equation f(x1,x2,...,xn,y) =0.



	Proof of the Implicit Function Theorem: f:â—š^2âƒ¦â—š. 
	Proof of the result when kâ©¾2. 
	Proof of the result when k=1. 


