
1. Introduction

1.1. Implicit and inverse functions
� A implicit function is a function de�ned �implicitly� through an equation:

F (x; y) = 0: (1)

A special case is �inverse function�:

G(y) =x: (2)

That this is a special case can be seen by setting F (x; y) :=G(y)¡x.
� Recall that a function is a triplet (f ;A; B), or f :A 7!B, where for every x2A, there corresponds a

unique y 2B which we denote by f(x). Thus to show that F (x; y) = 0 de�nes a function y = Y (x)
implicitly, we need to show the existence of such A; B, and a mapping x 7! y= Y (x). The key here
is to show the uniqueness of y, that is

8x2A; there is a unique y 2B such that F (x; y)= 0: (3)

� In calculus, we study functions through its derivatives. Thus a follow-up questions is, if (3) is satis�ed,
and indeed y is a function of x, that is y=Y (x),

� how regular is Y ? Can we deduce its regularity from that of F (x; y)?

� if Y has up to nth order derivatives, can we calculate them without explicitly �nding the
formula of Y ?

� In this unit we will answer these questions. In particular we will prove the following two theorems.

Theorem 1. (Implicit function theorem, Theorem 5.2.6 in Dr.Runde's notes) Let ? =/

U �RM+N be open, let F 2C1(U ;RN) where F is a function of (x; y) with x2RM ; y 2RN, and let
(x0; y0) 2U be such that F (x0; y0) = 0 and det@F

@y
(x0; y0) =/ 0. Then there are neighborhoods V �RM

of x0 and W �RN of y0 with V �W �U and a unique �2C1(V ;RN) such that

i. �(x0) = y0 and

ii. f(x; y) = 0 if and only if �(x)= y for all (x; y)2V �W.

Theorem 2. (Inverse function theorem, Theorem 5.2.5 in Dr. Runde's notes) Let ?=/
U �RN be open, let f 2C1(U ;RN), and let x02U be such that detJf(x0)=/ 0. Then there is an open
neighborhood V �U of x0 such that f is injective on V, f(V ) is open, and f¡1: f(V ) 7!RN is a C1-
function such that Jf¡1= Jf

¡1.

Remark 3. The two theorems are equivalent. We can prove either one and the other will follow.

1.2. Examples
� The inverse/implicit functions are de�ned locally.

Example 4. f(x; y)=x2+ y2¡ 1.
We see that

@f

@y
(x; y)= 2 y: (4)

Therefore if (x0; y0)=/ (�1;0), there are neighborhoods of (x0; y0) in which we can represent y=Y (x).
On the other hand, we see that at (�1; 0), this is not possible.

� Why (and how) is a locally de�ned function useful?

Example 5. Consider the equation

y3+x2 y2¡x y+x4=0: (5)



We see that when x=0, y=0. Thus it is natural to search for an implicit function y=Y (x) such that
Y (0)=0 and when x is close to 0, (x; Y (x)) satis�es (5). It turns out that Y (x)�x3 near x=0.

Figure 1. y3+x2 y2¡x y+x4=0 v.s. y=x3.

� The necessity implicitly de�ned functions.

Example 6. When studying planet orbits, Johannes Kepler tried to solve the following problem:

Assume that the planet is moving according to Kepler's law, how can we �nd its
position as a function of time?

We set up the problem in Figure 2 (Forgive my poor drawing! Texmacs does not have ellipsis
drawing tool). B is the position of say the moon, and F is the position of the earth. The (half) ellipsis
is the trajectory of B, which is an ellipsis with semi-axes a and b. We draw an auxiliary half circle
that is tangent to the ellipsis at the perigee P and the apogee A. We then �project� B to B 0 on this
half circle so that B 0B?AP .

Let O be the center of the half circle. We denote by E the angle \B 0OP , and call it the �eccentric
anomaly�. By Kepler's third law, the change rate of the area of the curvilinear triangle BPF is
constant, and can be easily calculated. We call this area the �mean anomaly� and denote it by M .
We also denote by e the eccentricity of the ellipsis, that is jOF j= a e. The task now is to obtain a
formula for E from the easy-to-obtain formula of M , that is writing E as a function of M .

It is clear that the area of OB 0P is given by E

2
a2. Therefore the area of OBP is E

2
a b.

Exercise 1. Prove this.

Next we have

jB 00B j= b
a
jB 0B j= b

a
a sinE = b sinE: (6)

Therefore the area of the triangle OBF is

1
2
jOF j � jBB 00j= e a

2
b sinE=

e
2
a b sinE: (7)



Therefore the area of FBP is given by

jOBP j ¡ jOBF j= a b
2
(E ¡ e sinE): (8)
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Figure 2. Derivation of Kepler's equation

Thus if we ``normalize'' M by the factor a b

2
, we reach the following relation between the

known �mean anomaly� M and the unknown �eccentric anomaly� E.

E =M + e sin(E) (9)

We see that E as a function of M is de�ned implicitly, and furthermore we note that it is not possible
to solve it through explicit formula.

On the other hand, it is possible to solve E through an �in�nite series� formula, as we will see in
a later lecture.

� Counter-examples.

Example 7. Let f(x; y) = (y ¡ x)2. Then we have @f

@y
(0; 0) = 0. However it is clear that a smooth

implicit function is de�ned through f(x; y)= 0.

Example 8. Let f(x) :=

(
x

2
+x2 sin

¡ 1
x

�
x=/ 0

0 x=0
. It is easy to see that f 0(0) > 0 but we now show

that there does not exist an inverse function in any neighborhood of x=0.
To do this we calculate

f 0(x)=
1
2
¡ cos

�
1
x

�
+2x sin

�
1
x

�
: (10)

Consider x2
¡
¡1

4
;
1

4

�
. For these x there holds

�� 1
2
+2 x sin

¡ 1
x

���< 1. On the other hand, we know that

there are xn1 ; xn2 ¡! 0 such that cos
�

1

xn
1

�
= 1, cos

�
1

xn
2

�
=¡1. Consequently, for any 0< "<

1

4
, f 0(x)

takes both positive and negative values in (¡"; "), which means f(x) is not monotone on (¡"; ") and
consequently cannot have a inverse function near x=0.

Exercise 2. Which assumption of the inverse function theorem is not satis�ed in Example 8?
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