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1. INTRODUCTION

Implicit and inverse functions
A implicit function is a function defined “implicitly” through an equation:
F(z,y)=0. (1)
A special case is “inverse function”
G(y) == (2)
That this is a special case can be seen by setting F'(z, y) :=G(y) — .

Recall that a function is a triplet (f, A, B), or f: A— B, where for every x € A, there corresponds a
unique y € B which we denote by f(x). Thus to show that F'(x, y) =0 defines a function y =Y (x)
implicitly, we need to show the existence of such A, B, and a mapping x — y =Y (x). The key here
is to show the uniqueness of y, that is

Ve e A, there is a unique y € B such that F(z, y) =0. (3)

In calculus, we study functions through its derivatives. Thus a follow-up questions is, if (3) is satisfied,
and indeed y is a function of x, that is y=Y (x),
o how regular is Y? Can we deduce its regularity from that of F(z, y)?

o if Y has up to nth order derivatives, can we calculate them without explicitly finding the
formula of Y7

In this unit we will answer these questions. In particular we will prove the following two theorems.

THEOREM 1. (IMPLICIT FUNCTION THEOREM, THEOREM 5.2.6 IN DR.RUNDE’S NOTES) Let & #
U CRM*N be open, let F € CYU,RYN) where F is a function of (x,y) with x € RM, ycRY, and let
(x0, Yo) € U be such that F(xo, yo) =0 and detg—j(xo, yo) #0. Then there are neighborhoods V. C RM

of xo and W CRY of yo with V x W CU and a unique ¢ € C*(V,RY) such that

i. ¢(x0) =yo and

it. f(x,y)=0 if and only if (x) =y for all (x,y) €V X W.
THEOREM 2. (INVERSE FUNCTION THEOREM, THEOREM 5.2.5 IN DR. RUNDE’S NOTES) Let & #
U CRY be open, let f € CHU,RYN), and let 2o € U be such that det J¢(zo) #0. Then there is an open

neighborhood V- C U of zo such that f is injective on V, f(V) is open, and f=* f(V) RN is a C'-
function such that Jp-1= Jfl.

Remark 3. The two theorems are equivalent. We can prove either one and the other will follow.

Examples
The inverse/implicit functions are defined locally.
Example 4. f(z,y)=22+y>—1.

We see that

%(w, y)=2y. (4)

Therefore if (20, yo) # (£1,0), there are neighborhoods of (xg, yo) in which we can represent y =Y ().
On the other hand, we see that at (£1,0), this is not possible.

Why (and how) is a locally defined function useful?

Example 5. Consider the equation

vy +ax2y?—zy+at=0. (5)



We see that when 2 =0, y=0. Thus it is natural to search for an implicit function y =Y (z) such that
Y (0) =0 and when =z is close to 0, (x, Y (z)) satisfies (5). It turns out that Y (z) ~ 23 near x =0.
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Figure 1. y3+$2y2—xy+x4:() V.S. y:q;:i.
The necessity implicitly defined functions.

Example 6. When studying planet orbits, Johannes Kepler tried to solve the following problem:

Assume that the planet is moving according to Kepler’s law, how can we find its
position as a function of time?

We set up the problem in Figure 2 (Forgive my poor drawing! Texmacs does not have ellipsis
drawing tool). B is the position of say the moon, and F is the position of the earth. The (half) ellipsis
is the trajectory of B, which is an ellipsis with semi-axes ¢ and b. We draw an auxiliary half circle
that is tangent to the ellipsis at the perigee P and the apogee A. We then “project” B to B’ on this
half circle so that B'BLAP.

Let O be the center of the half circle. We denote by E the angle ZB’OP, and call it the “eccentric
anomaly”. By Kepler’s third law, the change rate of the area of the curvilinear triangle B PF' is
constant, and can be easily calculated. We call this area the “mean anomaly” and denote it by M.
We also denote by e the eccentricity of the ellipsis, that is |OF| = a e. The task now is to obtain a
formula for E from the easy-to-obtain formula of M, that is writing F as a function of M.

It is clear that the area of OB’ P is given by g a?. Therefore the area of OBP is g ab.
Exercise 1. Prove this.
Next we have

B B|=2 1B/ B|= 2 asin E=bsin E. (6)
a a

Therefore the area of the triangle OBF is

%|OF|-|BB”|:%bsinE:§absinE. (7)



Therefore the area of FBP is given by

|OBP|—|OBF|:%b(E—esinE). (8)
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Figure 2. Derivation of Kepler’s equation

Thus if we ‘“‘normalize” M by the factor %b, we reach the following relation between the
known “mean anomaly” M and the unknown “eccentric anomaly” F.

E =M +esin(E) 9)

We see that E as a function of M is defined implicitly, and furthermore we note that it is not possible
to solve it through explicit formula.

On the other hand, it is possible to solve E through an “infinite series” formula, as we will see in
a later lecture.

Counter-examples.

Example 7. Let f(z,y) = (y — x)% Then we have Z—;(O, 0) = 0. However it is clear that a smooth
implicit function is defined through f(x, y)=0.

T 2 . 1
Example 8. Let f(z):= g+x sin(3) x#g . It is easy to see that f’(0) >0 but we now show
xr=

that there does not exist an inverse function in any neighborhood of z=0.
To do this we calculate
f’(x)—%—cos<é)+2xsin<%>. (10)
11

Consider x € (_Z’Z)' For these = there holds |% +2z sin(%)| < 1. On the other hand, we know that

there are x, 2 — 0 such that cos(mil) =1, cos(miz) = —1. Consequently, for any 0 <e < %, f(x)

n n

takes both positive and negative values in (—e¢, €), which means f(z) is not monotone on (—¢, €) and
consequently cannot have a inverse function near x =0.

Exercise 2. Which assumption of the inverse function theorem is not satisfied in Example 87
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