INTEGRATION ON \mathbb{R}^N

Please read §4.1, §4.2, §4.4 of Dr. Runde's notes.¹

Content theory (Jordan measure).

- A "measure" on \mathbb{R}^N is a function with a collection of subsets of \mathbb{R}^N as its domain, and with \mathbb{R} as its target space. We denote this function by μ .
- "Axioms".
 - 1. $\mu \ge 0$.
 - 2. $\mu([0,1]^N) = 1.$
 - 3. $\mu(A+x_0) = \mu(A)$ for any $x_0 \in \mathbb{R}^N$.
 - 4. $\mu(rA) = r^N \mu(A)$ for any $r \in \mathbb{R}$.
 - 5. $\mu(A) \leq \mu(B)$ if $A \subseteq B$.
 - 6. $\mu(A \cup B) = \mu(A) + \mu(B)$ if $A \cap B = \emptyset$.
- The measure of *N*-dimensional intervals and their finite unions.
 - $\circ \quad \mu((0,1)^N) = 1.$
 - $\mu([a_1, b_1] \times \dots \times [a_N, b_N]) = \mu((a_1, b_1) \times \dots \times (a_N, b_N)) = \prod_{j=1}^N (b_j a_j).$
 - \circ The measure of any finite union of N-dimensional intervals can be uniquely determined from the axioms, through dividing them into disjoint intervals.
- Outer and inner measures.
 - Let $S := \{$ subsets of \mathbb{R}^N that is a finite union of intervals $\}$. We define the Jordan outer measure

$$\mu_{\text{out}}(A) := \inf_{B \in \mathcal{S}, B \supseteq A} \mu(B), \tag{1}$$

and the Jordan inner measure

$$\mu_{\rm in}(A) := \sup_{B \in \mathcal{S}, B \subseteq A} \mu(B). \tag{2}$$

- Jordan measurable sets.
 - We say $A \subseteq \mathbb{R}^N$ is Jordan measurable if $\mu_{out}(A) = \mu_{in}(A)$, and denote this common value by $\mu(A)$.
 - If a set A satisfies $\mu_{\text{out}}(A) = 0$, then it is Jordan measurable with $\mu(A) = 0$.

Exercise 1. Prove that the Cantor set is Jordan measurable with $\mu(A) = 0$.

Exercise 2. Let $A_1, ..., A_m$ be such that $\mu(A_i) = 0, i = 1, 2, ..., m$. Prove that $A := \bigcup_{i=1}^m A_i$ is Jordan measurable and furthermore $\mu(A) = 0$.

Exercise 3. Find a sequence of sets A_1, A_2, \dots such that $\mu(A_i) = 0$ for every *i* but for $A := \bigcup_{i=1}^{\infty} A_i$ there cannot hold $\mu(A) = 0$.

• We have, for every $A \subseteq \mathbb{R}^N$,

$$\mu_{\text{out}}(A) = \mu_{\text{out}}(\bar{A}), \qquad \mu_{\text{in}}(A) = \mu_{\text{in}}(A^o). \tag{3}$$

- We have
- A is Jordan measurable $\iff \mu(\partial A) = 0.$ (4)

Exercise 4. Prove that $\mathbb{Q} \cap [0, 1]$ is not Jordan measurable.

• If A_1, A_2 are Jordan measurable, so are $A_1 \cap A_2, A_1 \cup A_2, A_1 \setminus A_2, A_2 \setminus A_1$.

^{1.} We will review §4.3, §4.5 later during the semester when the materials there are needed.

Integration of functions.

• Axioms.

"Integration" is a function from the $\mathcal{M} \times \mathcal{F}$ to \mathbb{R} : $I(\Omega, f) \in \mathbb{R}$. Here \mathcal{M} is the collection of all measurable sets, and \mathcal{F} is the collection of all functions.

- 1. $I(\Omega, \mathbf{1}_A) = \mu(\Omega \cap A);$
- 2. I is linear in f;
- 3. $I(\Omega_1 \cup \Omega_2, f) = I(\Omega_1, f) + I(\Omega_2, f)$ if $\Omega_1 \cap \Omega_2 = \emptyset$;
- 4. $I(\Omega, f_1) \leq I(\Omega, f_2)$ if $f_1 \leq f_2$.
- Simple functions.

 $f: \mathbb{R}^N \mapsto \mathbb{R}$ is simple if

$$f(x) = \sum_{i=1}^{m} a_i \mathbf{1}_{A_i} \tag{5}$$

where $A_1, ..., A_m$ are Jordan measurable, and $a_i \in \mathbb{R}$.

Exercise 5. Prove that simple functions are integrable with $I(\Omega, f) = \sum_{i=1}^{m} a_i \mu(\Omega \cap A_i)$.

.

• Upper and lower integrals.

Let \mathcal{S} be the set of all simple functions. For an arbitrary $f: \mathbb{R}^N \mapsto \mathbb{R}$ we can define its upper integral

$$I_{\rm up}(\Omega, f) := \inf_{g \in \mathcal{S}, g \ge f} I(\Omega, g) \tag{6}$$

and lower integral

$$I_{\rm lo}(\Omega, f) := \sup_{g \in \mathcal{S}, g \leqslant f} I(\Omega, g).$$
⁽⁷⁾

• Integrable functions.

f is integrable on Ω if

$$I_{\rm up}(\Omega, f) = I_{\rm lo}(\Omega, f). \tag{8}$$

- Checking integrability.
 - $\circ \quad f \geqslant 0 \text{ is integrable if and only if}$

$$A := \{ (x, y) \in \mathbb{R}^{N+1} | \ 0 \leqslant y \leqslant f(x), x \in \Omega \}$$

$$\tag{9}$$

is Jordan measurable in $\mathbb{R}^{N+1}.$ Furthermore

$$I(\Omega, f) = \mu_{N+1}(A). \tag{10}$$

- f is integrable if its graph has zero Jordan measure (content) in \mathbb{R}^{N+1} .
- In particular, continuous functions are integrable.

Some theoretical issues

Fundamental theorem of calculus

- Recall that there are now two definition of "integration" for N = 1.
 - Indefinite integral: The solutions to the equation y'(x) = f(x);
 - Riemann integral: The measure to the set $A := \{(x, y) | 0 \le y \le f(x), x \in \Omega\}$.
- They are related through the fundamental theorem of calculus:

THEOREM. Let $f: [a, b] \mapsto \mathbb{R}$ be "nice". Then

$$\int_{a}^{b} f(x) \,\mathrm{d}x = F(b) - F(a) \tag{11}$$

where the left hand side is Riemann integral, and F(x) is one of the indefinite integrals of f.

Remark 1. Continuous functios are "nice".

Remark 2. The situation becomes complicated when f is not continuous. For example one can find a function f that is not Riemann integrable but has an anti-derivative F. For (much) more on such issues, see the book "The Calculus Integral" by Brian S. Thomson, freely available at http://classicalrealanalysis.info/documents/T-CalculusIntegral-AllChapters-Portrait.pdf.

Fubini

• Fubini-type result:

THEOREM. (GENERIC FUBINI-TYPE) If f(x, y) is "nice", then

$$\int_{\Omega_1 \times \Omega_2} f(x, y) \,\mathrm{d}(x, y) = \int_{\Omega_1} \left[\int_{\Omega_2} f(x, y) \,\mathrm{d}y \right] \mathrm{d}x = \int_{\Omega_2} \left[\int_{\Omega_1} f(x, y) \,\mathrm{d}x \right] \mathrm{d}y. \tag{12}$$

- Be sure to understand the issues involved in a Fubini-type result:
 - i. Existence of the five integrals involved;
 - ii. Equalities of the integrals.

Remark 3. Continuous functions are "nice".

Remark 4. If *f* satisfies the following, then it is "nice":

- 1. f(x, y) is integrable on $\Omega_1 \times \Omega_2$;
- 2. For every x, f(x, y) is integrable on Ω_2 ;
- 3. For every y, f(x, y) is integrable on Ω_1 .
- Understanding Fubini through upper and lower integrals.

$$I_{\rm up}(\Omega_1, I_{\rm up}(\Omega_2, f(\cdot, y))) \leqslant I_{\rm up}(\Omega_1 \times \Omega_2, f(x, y));$$
(13)

$$I_{\rm lo}(\Omega_1, I_{\rm lo}(\Omega_2, f(\cdot, y))) \ge I_{\rm lo}(\Omega_1 \times \Omega_2, f(x, y)).$$

$$\tag{14}$$

• Cavalieri's principle (Zu Geng principle).

If every slice of the two volumes has the same area, then the two volumes are equal.

Example 5. Archimedes' and Liu Hui/Zu Chongzhi/Zu Geng's proofs of the volume of the ball.²

^{2.} See http://www.wlsh.tyc.edu.tw/ezfiles/2/1002/img/31/05OrCM_sphere.pdf. The article is in Chinese but the pictures should be quite self-explanatory.