
1. Taylor Expansion

Please read �3.5 of Dr. Runde's Notes.

1.1. Higher order derivatives.
� When N = 1, de�ning higher order derivatives is relatively intuitive, as f 0(x) is a similarly de�ned

function as f .

� When N > 1, if we denote by L(X;Y ) the space of all linear functions with domain X and target Y ,
we have the following. For simplicity of notation we assume f is smooth over the whole RN .

f Df D2f D3f ���
Domain RN RN RN RN

Target RM L(RN ;RM) L(RN ;L(RN ;RM)) L(RN ;L(RN ;L(RN ;RM)))

Representation
of target

N/A RN�M RN�N�M RN�N�N�M

Table 1. Higher order derivatives

� The key result that makes the above representation possible is the following:

L(X;L(Y ; Z))�L(X �Y ; Z): (1)

For now we just understand ��� as �somehow equivalent�.

� Thus for f :RN 7!RM, at every point x0, we need MN numbers to representDf(x0), MN2 numbers
to represent D2f(x0), and so on. It turns out that these numbers are exactly the partial derivatives
of the corresponding order.

Exercise 1. Can you prove this?

� By (1), we see that Df(x0): RN 7!RM, D2f(x0):R
N �RN 7!RM, D3f :RN �RN �RN 7!RM, and

so on.

Exercise 2. Prove that D2f(x0) is symmetric. What about D3f(x0)?

Exercise 3. Prove or disprove:
@
@v1

�
@f
@v2

�
(x0)=D2f(x0)(v1; v2); (2)

where v1; v22RN.

� Multiindex. �=(�1; :::; �N). De�ne j�j := j�1j+ ���+ j�N j.

� Due to symmetry of Dkf(x0), we can write a generic k-th order partial derivative as

@kf(x0)
@x1

�1���@xN�N
; j�j= k: (3)

There are �
k

�1; :::; �N

�
:=

k!
�1!����N!

(4)

di�erent k-th order partial derivatives.

� For simplicity, we use the notation

�! := �1!����N!: (5)

Thus (4) can be written as
k!
�!
=
j�j!
�!

: (6)

� Furthermore, for x2RN, we write

x� := x1
�1 ��� xN�N: (7)



� By the chain rule, we see that, if

g(t) := f(x0+ t �); t2R; x0; � 2RN ; (8)

then
dkg

dtk
=

X
j�j=k

k!
�!

@kf(x0)
@x1

�1���@xN�N
�1
�1 �2

�2����N�N=
X
j�j=k

k!
�!
Dkf(x0) (�; �; :::; �) (9)

where there are k �'s in the last expression.

1.2. Taylor expansion for N =1.

1.2.1. Basic idea.

� Recall that f 0(x0) can be de�ned through the idea of optimal approximation of f by a�ne functions:

lim
x¡!x0;x=/x0

jf(x)¡ f(x0)¡ f 0(x0) (x¡x0)j
jf(x)¡ a¡ b (x¡x0)j

=0 (10)

unless a= f(x0); b= f 0(x0).

� This idea can be readily generalized to higher order derivatives. The n-th order Taylor polynomial
Tn(x) for a function f at x0 is de�ned as follows:

lim
x¡!x0;x=/ x0

jf(x)¡Tn(x)j
jf(x)¡P (x)j =0 (11)

for all other n-th order polynomials.

Remark 1. The existence and uniqueness of such Tn(x) now becomes a non-trivial claim.

� One can prove that, if such Tn(x) exists, then it is given by

Tn(x)= f(x0)+ f 0(x0) (x¡x0)+
f 00(x0)
2!

(x¡x0)2+ ���+
f (n)(x0)

n!
(x¡x0)n: (12)

� Often it is a better idea to remind us the dependence of Tn on x0. In the following we do this by
writing Tn;x0(x) or Tn(x0;x).

1.2.2. Remainders.

� It is now natural to try to understand how good Tn;x0(x) approximates f(x) near x0. Thus we de�ne
the �remainder term�

Rn;x0(x)=Rn(x0;x) := f(x)¡Tn;x0(x): (13)

� It should be emphasized that Rn;x0(x) is a �xed function, depending on n; x0; x. In particular, the
various �remainder�s introduced below are just di�erent representations of the same functions. Thus
it is more accurate to say �Peano form of the remainder�, �Lagrange form of the remainder�, etc.

� Di�erent forms of remainders.

� Peano.

Rn;x0(x)= o((x¡x0)n); i:e:; lim
x!x0;x=/ x0

jRn;x0(x)j
jx¡x0jn

=0: (14)

� Lagrange.

Rn;x0(x)=
f (n+1)(c)
(n+1)!

(x¡x0)n+1: (15)

� Cauchy.

Rn;x0(x) =
f (n+1)(c)

n!
(x¡ c)n (x¡x0)=

f (n+1)(c)
n!

(1¡ �)n (x¡x0)n+1 (16)

where �= c¡ x0
x¡ x0

.



� Schlomilich-Roche.

Rn;x0(x)=
f (n+1)(c)

n! p
(x¡ c)n¡p+1 (x¡x0)p=

f (n+1)(c)

n! p
(1¡ �)n¡p+1 (x¡x0)n+1 (17)

where �= c¡ x0
x¡ x0

.

� Integral.

Rn;x0(x)=
1
n!

Z
x0

x

f (n+1)(t) (x¡ t)ndt: (18)

Note. It should be kept in mind that di�erent forms of remainder requires di�erent regularity
conditions on f .

Remark 2. See my Fall 2013 Math 217 lecture notes for hints on how to prove the above.

1.3. Taylor expansion for N > 1.
� The basic idea is to use the auxiliary function

g(t) := f(x0+ t (x¡x0)) (19)

and apply Taylor expansion results for N =1 together with the identity (9).

� The n-th order Taylor polynomial for f at x0 is then given by

Tn;x0(x) :=
X
k=0

n
24 X
j�j=k

1
�!

@kf(x0)
@x1

�1���@xN�N
(x¡x0)�

35: (20)

� Remainders
We still denote

Rn;x0(x) := f(x)¡Tn;x0(x): (21)

� Peano.

Rn;x0(x)= o(jx¡x0jn): (22)

� Lagrange.

Rn;x0(x) =
X

j�j=n+1

1

�!

@kf(�)

@x1
�1���@xN�N

(x¡x0)� (23)

where � is located on the line segment connecting x0 and x.

Exercise 4. Obtain Cauchy, Schlomilich-Roche, and Integral forms of the remainder for N > 1.
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