DIFFERENTIABILITY OF FUNCTIONS
January 16, 2017
Please read §3.1-§3.4 of Dr. Runde’s notes.

1. Definitions

1.1. Directional and partial derivatives
e When N =1, the derivative at z for a function f is defined as the following number:

. f(xo+h) — f(z0)
h—lg(r)],%z;&o h ’ (1)

The function f is said to be not differentiable if this number does not exist.

e For N > 1, the natural generalization of this idea gives “directional derivative” Let v € RY, v # 0,
and f: RN +— RM. We say f is differentiable in the direction v if the function g(h) := f(zo+ v h) is
differentiable at h=0.

Remark 1. In the special cases v = ey, eq, ..., ey, the directional derivatives become the “partial
derivatives” of f, ;—ai, . %, at zg. Thus for example we see that
of /
—(xo1,.., x =g1(0 2
(’)xl( 01 on) = g1(0) (2)

where gl(h) = f(x(n + h, zg2, ..., l‘ON).
Note. Make sure you know how to calculate partial derivatives!

e Directional derivative is very useful, however it is not satisfactory, as the following important property
for N=1,

If f is differentiable at xg, then it is continuous at xq,

does not hold anymore.

0 rz=9y=0
f(z, y) exist, but f(x, y) is not continuous at (0, 0).

z2y
Example 2. Consider f(z,y):= { xt g2 (@, y) #(0,0) . At (0,0), all the directional derivatives of

Exercise 1. A function that is directional differentiable at all orders but not continuous?

1.2. Total differentiability

e Due to Example 2 directional differentiability (and of course the special case partial differentiability)
is not appropriate for theoretical study.

L 0,0
Exercise 2. Consider f(z,y):=¢ **+¥* (@,9)#(0,0)
0 z=y=0

at (0,0).

. Prove that %(0, 0)= 2—5(0, 0) =0 but f is not continuous

e Alternative interpretation of differentiability for N =1.
Let N=1. We say f is differentiable at x if there is an affine function A(z)=a+bz
such that
lim @) =A@ (3)
r—xo |CL' — CL’Q|

Exercise 3. Prove or disprove: f is continuous at zg if there is a constant function C(z):= ¢ such that

S | f(w) = C(x)[ =0. 4



Exercise 4. Prove that such A(z), if it exists, is unique.

Exercise 5. Prove that if A(x) exists, then f(x) is differentiable and z¢ and furthermore a = f(zo) — zo f'(z0),

b= f'(z0).

Remark 3. We see that it is more illustruating to write A(z) = f(zo) + T (z — zo) where T is a linear
function T'(h) :=bh.

Total differentiability in R”.
We say f is differentiable at xg if there is a linear function T" such that

e @) = @) T =)l 5

T—> 20, FTo HJ?—J7()H

The linear function T is called the “differential” of f at xzo. We denote it by D f(xo).

Remark 4. Note that D f(x¢), not D f, denotes the linear function from R to RM. D f is a function
with domain R” and range “the space of linear functions”.

Exercise 6. Prove that if f is differentiable at x¢ then it is continuous at xg.

Linear function.
Recall that T: RY — RM is linear if there holds

T(az+by)=aT(z)+bT(y) (6)
for all a,beR.
Matrix representations of linear functions.

t
Let T:R™ — RM be linear. Then there is a unique M x N matrix ( s

N
> such that

tamr o TN
t11 - N x1

r@={ oo )|t ) 7
tar o tun TN

Exercise 7. Prove this claim.

Matrix representation of D f(x).

As D f(xzo) is a linear function, it has a matrix representation, we denote it by J¢(xo), and call it
the Jacobian matrix of f at xg.

The calculation of Js(zo) is easy thanks to the following result:

THEOREM 5. Let f: RN+ RM be differentiable at xo. Then it is directionally differentiable at xq in
all directions. In particular all of its partial derivatives exist. Furthermore we have

t11 - N
Jp(xo)=| + " i (8)
tar o tuN
withtij:i.
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2. Further properties.

2.1. Tangent spaces.

It is helpful to understand D f(z() not as a function with the same domain as f. This understanding
will be crucial in differential geometry, the application of calculus to geometry.

Intuitively, let f: RY +— RM. We can think of f(z) as an “avatar” of the point . When z moves in
RY, its avatar moves in RM according to the rule f.



In this setting, the linear function D f(zg), is the relation between the velocity of x at zy and the
v

velocity of its avatar at f(xg). More specifically, if the velocity of x at xq is v= < gl
UN

), then its avatar

is moving with velocity

o o
izg) - p(@wo) \ [
D f(xo)(v) = J (o) - v= Do Eo) (9)
Ofm(zo) | 6fM(.’L' ) UN
Ox1 oz N

Thus rigorously speaking, the domain of D f(xg) is “the space of velocities at x(”, which is different
from the domain of f, the “space of positions”.

This distinction becomes important in differential geometry, where the domain of f is not R, but
say some curved surfaces. In that case the “space of positions” is the curved surface, but the space of
velocities at xg is not curved, it is the tangent plane of the surface at x.

2.2. Chain rule.

If we use the “avatar” intuition, it is easy to understand the chain rule.

So we have z € RY, its “avatar” g(z) € R and an “avatar of avatar” f(g(z)) € R¥. Thus at every
1o € RN, Dg(x) relates the velocity of z to the velocity of the avatar g(z), while at yo € R, D f(yo)
relates the velocity of the avatar at yo to the velocity of the “avatar of avatar” at f(yo). Consequently,
the relation between the velocity of xy to that of its “avatar of avatar” is given by the composite
function:

v D f(g(x0))(Dg(x0) (v))- (10)

Exercise 8. Prove that the matrix of the composition of linear functions is the product of the matrix representations
of these functions.

Consequently we have
I fog(0) = J5(yo) - Jg(wo) (11)
where yo= g(xo).

Exercise 9. Let f: R™ — R and g: RN —RM use (11) to prove the chain rule:

M
X090y = 3 2L (g(a)) - G2 o) (12)

ox;
v k=1
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