
Differentiability of Functions

January 16, 2017

Please read �3.1��3.4 of Dr. Runde's notes.

1. De�nitions

1.1. Directional and partial derivatives

� When N =1, the derivative at x0 for a function f is de�ned as the following number:

lim
h¡!0;h=/ 0

f(x0+h)¡ f(x0)
h

: (1)

The function f is said to be not di�erentiable if this number does not exist.

� For N > 1, the natural generalization of this idea gives �directional derivative�: Let v 2 RN, v =/ 0,
and f :RN 7!RM. We say f is di�erentiable in the direction v if the function g(h) := f(x0+ v h) is
di�erentiable at h=0.

Remark 1. In the special cases v = e1; e2; :::; eN, the directional derivatives become the �partial
derivatives� of f , @f

@x1
; :::;

@f

@xN
, at x0. Thus for example we see that

@f
@x1

(x01; :::; x0N)= g1
0(0) (2)

where g1(h) := f(x01+h; x02; :::; x0N).

Note. Make sure you know how to calculate partial derivatives!

� Directional derivative is very useful, however it is not satisfactory, as the following important property
for N =1,

If f is di�erentiable at x0, then it is continuous at x0,

does not hold anymore.

Example 2. Consider f(x; y) :=

(
x2 y

x4+ y2
(x; y)=/ (0; 0)

0 x= y=0
. At (0; 0), all the directional derivatives of

f(x; y) exist, but f(x; y) is not continuous at (0; 0).

Exercise 1. A function that is directional di�erentiable at all orders but not continuous?

1.2. Total di�erentiability

� Due to Example 2 directional di�erentiability (and of course the special case partial di�erentiability)
is not appropriate for theoretical study.

Exercise 2. Consider f(x; y) :=

(
x y

x2+ y2
(x; y) =/ (0; 0)

0 x= y=0
. Prove that @f

@x
(0;0)=

@f

@y
(0;0)=0 but f is not continuous

at (0; 0).

� Alternative interpretation of di�erentiability for N =1.

Let N =1. We say f is di�erentiable at x0 if there is an a�ne function A(x)=a+ b x
such that

lim
x¡!x0

jf(x)¡A(x)j
jx¡x0j

=0: (3)

Exercise 3. Prove or disprove: f is continuous at x0 if there is a constant function C(x) := c0 such that

lim
x¡!x0

jf(x)¡C(x)j=0: (4)



Exercise 4. Prove that such A(x), if it exists, is unique.

Exercise 5. Prove that if A(x) exists, then f(x) is di�erentiable and x0 and furthermore a= f(x0)¡ x0 f
0(x0),

b= f 0(x0).

Remark 3. We see that it is more illustruating to write A(x)= f(x0)+T (x¡x0) where T is a linear
function T (h) := b h.

� Total di�erentiability in RN.

We say f is di�erentiable at x0 if there is a linear function T such that

lim
x¡!x0;x=/x0

kf(x)¡ f(x0)¡T (x¡x0)k
kx¡x0k

=0: (5)

The linear function T is called the �di�erential� of f at x0. We denote it by Df(x0).

Remark 4. Note that Df(x0), not Df , denotes the linear function fromRN to RM. Df is a function
with domain RN and range �the space of linear functions�.

Exercise 6. Prove that if f is di�erentiable at x0 then it is continuous at x0.

� Linear function.
Recall that T :RN 7!RM is linear if there holds

T (a x+ b y)= a T (x)+ b T (y) (6)

for all a; b2R.

� Matrix representations of linear functions.

Let T :RN 7!RM be linear. Then there is a unique M �N matrix
0@ t11 ��� t1N

��� ��� ���
tM1 ��� tMN

1A such that

T (x)=

0@ t11 ��� t1N
��� ��� ���

tM1 ��� tMN

1A0@ x1
���
xN

1A: (7)

Exercise 7. Prove this claim.

� Matrix representation of Df(x0).
As Df(x0) is a linear function, it has a matrix representation, we denote it by Jf(x0), and call it

the Jacobian matrix of f at x0.
The calculation of Jf(x0) is easy thanks to the following result:

Theorem 5. Let f :RN 7!RM be di�erentiable at x0. Then it is directionally di�erentiable at x0 in
all directions. In particular all of its partial derivatives exist. Furthermore we have

Jf(x0) =

0@ t11 ��� t1N
��� ��� ���

tM1 ��� tMN

1A (8)

with tij=
@fi
@xj

.

2. Further properties.

2.1. Tangent spaces.

� It is helpful to understand Df(x0) not as a function with the same domain as f . This understanding
will be crucial in di�erential geometry, the application of calculus to geometry.

� Intuitively, let f :RN 7!RM. We can think of f(x) as an �avatar� of the point x. When x moves in
RN, its avatar moves in RM according to the rule f .



� In this setting, the linear function Df(x0), is the relation between the velocity of x at x0 and the

velocity of its avatar at f(x0). More speci�cally, if the velocity of x at x0 is v=
0@ v1

���
vN

1A, then its avatar

is moving with velocity

Df(x0)(v)= Jf(x0) � v=

0BB@
@f1
@x1

(x0) ��� @f1
@xN

(x0)
��� ��� ���

@fM(x0)

@x1
��� @fM

@xN
(x0)

1CCA
0@ v1

���
vN

1A: (9)

� Thus rigorously speaking, the domain of Df(x0) is �the space of velocities at x0�, which is di�erent
from the domain of f , the �space of positions�.

� This distinction becomes important in di�erential geometry, where the domain of f is not RN, but
say some curved surfaces. In that case the �space of positions� is the curved surface, but the space of
velocities at x0 is not curved, it is the tangent plane of the surface at x0.

2.2. Chain rule.

� If we use the �avatar� intuition, it is easy to understand the chain rule.

� So we have x 2RN, its �avatar� g(x) 2RM and an �avatar of avatar� f(g(x)) 2RK. Thus at every
x02RN, Dg(x0) relates the velocity of x to the velocity of the avatar g(x), while at y02RM, Df(y0)
relates the velocity of the avatar at y0 to the velocity of the �avatar of avatar� at f(y0). Consequently,
the relation between the velocity of x0 to that of its �avatar of avatar� is given by the composite
function:

v 7!Df(g(x0))(Dg(x0)(v)): (10)

Exercise 8. Prove that thematrix of the composition of linear functions is the product of thematrix representations
of these functions.

� Consequently we have

Jf�g(x0) =Jf(y0) � Jg(x0) (11)

where y0= g(x0).

Exercise 9. Let f :RM 7!R and g:RN 7!RM, use (11) to prove the chain rule:

@(f � g)
@xi

(x0) =
X
k=1

M
@f
@yk

(g(x0)) �
@gk
@xi

(x0): (12)
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