DIFFERENTIABILITY OF FUNCTIONS

January 16, 2017

Please read §3.1–§3.4 of Dr. Runde's notes.

1. Definitions

1.1. Directional and partial derivatives

• When N = 1, the derivative at x_0 for a function f is defined as the following number:

$$\lim_{h \to 0, h \neq 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$
 (1)

The function f is said to be not differentiable if this number does not exist.

• For N > 1, the natural generalization of this idea gives "directional derivative": Let $v \in \mathbb{R}^N$, $v \neq 0$, and $f: \mathbb{R}^N \mapsto \mathbb{R}^M$. We say f is differentiable in the direction v if the function $g(h) := f(x_0 + vh)$ is differentiable at h = 0.

Remark 1. In the special cases $v = e_1, e_2, ..., e_N$, the directional derivatives become the "partial derivatives" of $f, \frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_N}$, at x_0 . Thus for example we see that

$$\frac{\partial f}{\partial x_1}(x_{01},...,x_{0N}) = g_1'(0) \tag{2}$$

where $g_1(h) := f(x_{01} + h, x_{02}, ..., x_{0N}).$

Note. Make sure you know how to calculate partial derivatives!

- Directional derivative is very useful, however it is not satisfactory, as the following important property for N = 1,
 - If f is differentiable at x_0 , then it is continuous at x_0 ,

does not hold anymore.

Example 2. Consider $f(x, y) := \begin{cases} \frac{x^2 y}{x^4 + y^2} & (x, y) \neq (0, 0) \\ 0 & x = y = 0 \end{cases}$. At (0, 0), all the directional derivatives of f(x, y) exist, but f(x, y) is not continuous at (0, 0).

Exercise 1. A function that is directional differentiable at all orders but not continuous?

1.2. Total differentiability

• Due to Example 2 directional differentiability (and of course the special case partial differentiability) is not appropriate for theoretical study.

Exercise 2. Consider $f(x, y) := \begin{cases} \frac{x y}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & x = y = 0 \end{cases}$. Prove that $\frac{\partial f}{\partial x}(0, 0) = \frac{\partial f}{\partial y}(0, 0) = 0$ but f is not continuous at (0, 0).

• Alternative interpretation of differentiability for N = 1.

3

Let N = 1. We say f is differentiable at x_0 if there is an affine function A(x) = a + b x such that

$$\lim_{x \to x_0} \frac{|f(x) - A(x)|}{|x - x_0|} = 0.$$
(3)

Exercise 3. Prove or disprove: f is continuous at x_0 if there is a constant function $C(x) := c_0$ such that

$$\lim_{x \to x_0} |f(x) - C(x)| = 0.$$
(4)

Exercise 4. Prove that such A(x), if it exists, is unique.

Exercise 5. Prove that if A(x) exists, then f(x) is differentiable and x_0 and furthermore $a = f(x_0) - x_0 f'(x_0)$, $b = f'(x_0)$.

Remark 3. We see that it is more illustructing to write $A(x) = f(x_0) + T(x - x_0)$ where T is a linear function T(h) := b h.

• Total differentiability in \mathbb{R}^N .

We say f is differentiable at x_0 if there is a linear function T such that

$$\lim_{x \to x_0, x \neq x_0} \frac{\|f(x) - f(x_0) - T(x - x_0)\|}{\|x - x_0\|} = 0.$$
(5)

The linear function T is called the "differential" of f at x_0 . We denote it by $Df(x_0)$.

Remark 4. Note that $Df(x_0)$, not Df, denotes the linear function from \mathbb{R}^N to \mathbb{R}^M . Df is a function with domain \mathbb{R}^N and range "the space of linear functions".

Exercise 6. Prove that if f is differentiable at x_0 then it is continuous at x_0 .

• Linear function.

Recall that $T: \mathbb{R}^N \mapsto \mathbb{R}^M$ is linear if there holds

$$T(ax+by) = aT(x) + bT(y)$$
(6)

for all $a, b \in \mathbb{R}$.

• Matrix representations of linear functions.

Let $T: \mathbb{R}^N \mapsto \mathbb{R}^M$ be linear. Then there is a unique $M \times N$ matrix $\begin{pmatrix} t_{11} & \cdots & t_{1N} \\ \vdots & \ddots & \vdots \\ t_{M1} & \cdots & t_{MN} \end{pmatrix}$ such that $T(x) = \begin{pmatrix} t_{11} & \cdots & t_{1N} \\ \vdots & \ddots & \vdots \\ t_{M1} & \cdots & t_{MN} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}.$ (7)

Exercise 7. Prove this claim.

• Matrix representation of $Df(x_0)$.

As $Df(x_0)$ is a linear function, it has a matrix representation, we denote it by $J_f(x_0)$, and call it the Jacobian matrix of f at x_0 .

The calculation of $J_f(x_0)$ is easy thanks to the following result:

THEOREM 5. Let $f: \mathbb{R}^N \mapsto \mathbb{R}^M$ be differentiable at x_0 . Then it is directionally differentiable at x_0 in all directions. In particular all of its partial derivatives exist. Furthermore we have

$$J_f(x_0) = \begin{pmatrix} t_{11} & \cdots & t_{1N} \\ \vdots & \ddots & \vdots \\ t_{M1} & \cdots & t_{MN} \end{pmatrix}$$

$$\tag{8}$$

with $t_{ij} = \frac{\partial f_i}{\partial x_i}$.

2. Further properties.

2.1. Tangent spaces.

- It is helpful to understand $Df(x_0)$ not as a function with the same domain as f. This understanding will be crucial in differential geometry, the application of calculus to geometry.
- Intuitively, let $f: \mathbb{R}^N \to \mathbb{R}^M$. We can think of f(x) as an "avatar" of the point x. When x moves in \mathbb{R}^N , its avatar moves in \mathbb{R}^M according to the rule f.

• In this setting, the linear function $Df(x_0)$, is the relation between the velocity of x at x_0 and the velocity of its avatar at $f(x_0)$. More specifically, if the velocity of x at x_0 is $v = \begin{pmatrix} v_1 \\ \vdots \\ v_N \end{pmatrix}$, then its avatar is moving with velocity

$$Df(x_0)(v) = J_f(x_0) \cdot v = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \cdots & \frac{\partial f_1}{\partial x_N}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_M(x_0)}{\partial x_1} & \cdots & \frac{\partial f_M}{\partial x_N}(x_0) \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_N \end{pmatrix}.$$
(9)

- Thus rigorously speaking, the domain of $Df(x_0)$ is "the space of velocities at x_0 ", which is different from the domain of f, the "space of positions".
- This distinction becomes important in differential geometry, where the domain of f is not \mathbb{R}^N , but say some curved surfaces. In that case the "space of positions" is the curved surface, but the space of velocities at x_0 is not curved, it is the tangent plane of the surface at x_0 .

2.2. Chain rule.

- If we use the "avatar" intuition, it is easy to understand the chain rule.
- So we have $x \in \mathbb{R}^N$, its "avatar" $g(x) \in \mathbb{R}^M$ and an "avatar of avatar" $f(g(x)) \in \mathbb{R}^K$. Thus at every $x_0 \in \mathbb{R}^N$, $Dg(x_0)$ relates the velocity of x to the velocity of the avatar g(x), while at $y_0 \in \mathbb{R}^M$, $Df(y_0)$ relates the velocity of the avatar at y_0 to the velocity of the "avatar of avatar" at $f(y_0)$. Consequently, the relation between the velocity of x_0 to that of its "avatar of avatar" is given by the composite function:

$$v \mapsto Df(g(x_0))(Dg(x_0)(v)). \tag{10}$$

Exercise 8. Prove that the matrix of the composition of linear functions is the product of the matrix representations of these functions.

• Consequently we have

$$J_{f \circ g}(x_0) = J_f(y_0) \cdot J_g(x_0)$$
(11)

where $y_0 = g(x_0)$.

Exercise 9. Let $f: \mathbb{R}^M \to \mathbb{R}$ and $g: \mathbb{R}^N \to \mathbb{R}^M$, use (11) to prove the chain rule:

$$\frac{\partial (f \circ g)}{\partial x_i}(x_0) = \sum_{k=1}^M \frac{\partial f}{\partial y_k}(g(x_0)) \cdot \frac{\partial g_k}{\partial x_i}(x_0).$$
(12)