1. Topology of \mathbb{R}^N .

• Open and closed balls.

$$B_r(x_0) := \{ x \in \mathbb{R}^N | \|x - x_0\| < r \}; \qquad B_r[x_0] := \{ x \in \mathbb{R}^N | \|x - x_0\| \leq r \}.$$
(1)

- Open and closed sets.
 - A set is open if and only if it is a union of open balls;

Exercise 1. Prove that a subset of \mathbb{R}^N is open if and only if it is a countable union of open balls.

- A set is closed if and only if its complement is open.
- A set A is closed if and only if $\{x_n\} \subseteq A, x_n \longrightarrow x$, then $x \in A$.
- Some new operations on sets.
 - Interior.

$$A^{o} := \bigcup_{B} \{ B \subseteq A | B \text{ is open} \}.$$

$$\tag{2}$$

• Closure.

$$\bar{A} := \bigcap_B \{ B \supseteq A | B \text{ is closed} \}.$$
(3)

• Boundary.

$$\partial A := \bar{A} \setminus A^o. \tag{4}$$

Exercise 2. Let $A := \{(x, y) | x \in \mathbb{Q}, y \in \mathbb{Q}\}$ and $B := \left\{ \left(\frac{1}{n}, \frac{1}{m}\right) | n, m \in \mathbb{N} \right\}$. Calculate their interior, closuer, and boundary.

Exercise 3. Let $A, B \subseteq \mathbb{R}^N$ be arbitrary. Prove the following

$$(A^{o})^{o} = A^{o}, \qquad (A \cap B)^{o} = A^{o} \cap B^{o}, \qquad \overline{(A)} = \overline{A}, \qquad \overline{(A \cup B)} = \overline{A} \cup \overline{B}, \tag{5}$$

$$\partial(\partial A) \subseteq \partial A, \qquad \partial(A \cup B) \subseteq (\partial A) \cup (\partial B), \qquad \partial(A \cap B) \supseteq (\partial A) \cap (\partial B).$$
 (6)

Exercise 4. Prove that x is a cluster point of A if and only if $x \in \overline{A - \{x\}}$.

A fun problem. Let $A \subset \mathbb{R}^N$. Apply c, o, - to A finitely many times in any order you want. How many different set can you get?¹

- Compactness.
 - Definition. A set $K \subset \mathbb{R}^N$ is compact if every open cover has a finite subcover.

Exercise 5. Let $A = \{x_1, x_2, ...\} \cup \{y_1, y_2, ...\}$. Assume that both $\{x_n\}$ and $\{y_n\}$ are convergent. Prove or disprove: A is compact.

• A set $K \subset \mathbb{R}^N$ is compact if and only if every sequence in K has a convergent subsequence

^{1.} At most 14.

whose limit is in K.

Proof.

- If. Consider an arbitrary open covering of K. Clearly we can assume that it is a countable covering: $K \subseteq \bigcup_{i=1}^{\infty} U_i$. Denote $V_i := \bigcup_{j=1}^{i} U_j$. Note that $V_1 \subseteq V_2 \subseteq V_3 \subseteq \cdots$. If there is a *i* such that $K \subseteq V_i$ then we have a finite subcover. Otherwise we have a sequence $\{x_n\} \subseteq K$ such that $x_n \notin V_n$. By assumption it has a convergent subsequence $x_{n_k} \longrightarrow x_0 \in K$. There is a $m_0 \in \mathbb{N}$ such that $x_0 \in V_{m_0}$. As V_{m_0} is open, there is $k_0 \in \mathbb{N}$ such that $x_{n_k} \in V_{m_0}$ for all $k > k_0$. Now again because $K \subseteq \bigcup_{i=1}^{\infty} V_i$, there are m_1, \ldots, m_{k_0} such that $x_{n_k} \in V_m$ for all $k \in \mathbb{N}$. Contradiction.
- Only if. Let K be compact. Let $\{x_n\}$ be an arbitrary sequence in K. Assume the contrary, that is $\{x_n\}$ does not have any convergent subsequence whose limit is in K. Thus we can assume that $x_i \neq x_j$ whenever $i \neq j$.

Under such assumptions, for any $y \in K$, there is r(y) > 0 such that

$$B(y) := B_{r(y)}(y) \cap \{x_n\} \subseteq \{y\}.$$
(7)

Clearly $K \subseteq B(y)$. By compactness of K there is a finite sub-cover:

$$K \subseteq B_{r(y_1)}(y_1) \cup \dots \cup B_{r(y_k)}(y_k). \tag{8}$$

In particular

$$\{x_n\} \subseteq B_{r(y_1)}(y_1) \cup \dots \cup B_{r(y_k)}(y_k). \tag{9}$$

Now by (7) there holds $\{x_n\} \subseteq \{y_1, ..., y_k\}$. Contradiction.

• Heine-Borel. A set $K \subset \mathbb{R}^N$ is compact if and only if it is both closed and bounded.

Exercise 6. Prove that $K \subset \mathbb{R}^N$ is closed and bounded if and only if every sequence in K has a convergent subsequence whose limit is in K. Thus proving Heine-Borel.

- Connectness.
 - Definition. A set A is connected if and only if there do not exist open sets U, V such that $A \subseteq U \cup V$ and $U \cap V = \emptyset$.

Exercise 7. Let $A := \left\{ \left(x, \sin\left(\frac{1}{x}\right)\right) | x > 0 \right\} \cup \{(0, y) | -1 \le y \le 1\}$. Is A connected? Justify your answer.

Exercise 8. Let $A = A_1 \cup A_2$ where both A_1, A_2 are closed. Furthermore assume $A_1 \cap A_2 = \emptyset$. Prove or disprove: A is disconnected.

1. LIMIT AND CONTINUITY OF FUNCTIONS

Please read §2.2-2.4 of Dr. Runde's book.

1.1. Definitions and basic properties

• Let $f: \mathbb{R}^N \mapsto \mathbb{R}^M$. We say $\lim_{x \to x_0} f(x) = L$ if

$$\forall \varepsilon > 0 \ \exists \delta > 0 \qquad 0 < \|x - x_0\| < \delta \Longrightarrow \|f(x) - L\| < \varepsilon.$$

$$\tag{10}$$

Note the 0 < .

• When $\lim_{x\to x_0} f(x) = f(x_0)$, we say f is continuous at x_0 .

Exercise 9. Let $g: \mathbb{R}^N \to \mathbb{R}^M, f: \mathbb{R}^M \to \mathbb{R}^K$. Prove or disprove the following statements:

- a) If $\lim_{x\to x_0} g(x) = y_0$ and $\lim_{y\to y_0} f(y) = L$, then $\lim_{x\to x_0} f(g(x)) = L$;
- b) If g(x) is continuous at x_0 and f(y) is continuous at $y_0 := g(x_0)$, then f(g(x)) is continuous at x_0 .
- Properties of continuous functions.
 - Reaches maximum and minimum over compact sets.
 - When M = 1 enjoys intermediate value property.
 - D compact, f continuous, then f(D) compact;
 - D connected, f continuous, then f(D) connected.
 - U open, f continuous, then $f^{-1}(U)$ open.

Exercise 10. Let D be compact. Prove or disprove: $f^{-1}(D)$ is compact.

Exercise 11. Let D be connected. Prove or disprove: $f^{-1}(D)$ is connected.

Exercise 12. Let U be open. Prove or disprove: f(U) is open.

1.2. Fine properties and pitfalls

• Directional limit.

Example 1. Consider
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$
. Then we see that
$$\lim_{y \to 0} \left[\lim_{x \to 0} f(x, y) \right] = \lim_{x \to 0} \left[\lim_{x \to 0} f(x, y) \right] = 0$$
(11)

and furthermore $\lim_{(x, y) \to 0} a_{\text{long a straight line}} f(x, y) = 0$, but

$$\lim_{(x,y)\longrightarrow(0,0)} f(x,y) \tag{12}$$

does not exist.

Exercise 13. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that $\lim_{t \to 0} f(x(t), y(t)) \to 0$ for every smooth curve (x(t), y(t)) satisfying $\lim_{t \to 0} (x(t), y(t)) = (0, 0)$. Prove or disprove: $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$.

Example 2. Consider $f(x, y) = (x + y) \sin(\frac{1}{x}) \sin(\frac{1}{y})$ with domain $\{(x, y) | x \neq 0, y \neq 0\}$. Then we have

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$
(13)

but

neither
$$\lim_{y \to 0} \left[\lim_{x \to 0} f(x, y) \right] \text{ nor } \lim_{x \to 0} \left[\lim_{x \to 0} f(x, y) \right]$$
(14)

Darboux functions.

• A function that has the intermediate value property is called a "Darboux function".

Example 3. Let
$$f(x) := \begin{cases} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
. Then $f(x)$ is Darboux but not continuous.

Remark 4. It is possible to construct a function that is Darboux but is nowhere continuous. An example is "Conway's base 13 function" which takes every real value in every interval. A very accessible explanation is available at https://en.wikipedia.org/wiki/Conway base 13 function.

Exercise 14. Given the above, prove that Conway's base 13 function is nowhere continuous.