
1. Topology of RN.

� Open and closed balls.

Br(x0) := fx2RNj kx¡x0k<rg; Br[x0] := fx2RNj kx¡x0k6 rg: (1)

� Open and closed sets.

� A set is open if and only if it is a union of open balls;

Exercise 1. Prove that a subset of RN is open if and only if it is a countable union of open balls.

� A set is closed if and only if its complement is open.

� A set A is closed if and only if fxng�A; xn¡! x, then x2A.

� Some new operations on sets.

� Interior.

Ao :=[BfB �AjB is openg: (2)

� Closure.

A� :=\BfB �AjB is closedg: (3)

� Boundary.

@A :=A�nAo: (4)

Exercise 2. Let A := f(x; y)j x 2Q; y 2Qg and B :=
n�

1

n
;
1

m

�
j n; m 2N

o
. Calculate their interior, closuer, and

boundary.

Exercise 3. Let A; B �RN be arbitrary. Prove the following

(Ao)o=Ao; (A\B)o=Ao\Bo; (A)=A� ; (A[B)=A� [B� ; (5)

@(@A)� @A; @(A[B)� (@A)[ (@B); @(A\B)� (@A)\ (@B): (6)

Exercise 4. Prove that x is a cluster point of A if and only if x2A¡fxg.

A fun problem. Let A�RN. Apply c;o; � to A �nitely many times in any order you
want. How many di�erent set can you get?1

� Compactness.

� De�nition. A set K �RN is compact if every open cover has a �nite subcover.

Exercise 5. Let A= fx1; x2; :::g[ fy1; y2; :::g. Assume that both fxng and fyng are convergent. Prove or
disprove: A is compact.

� A set K � RN is compact if and only if every sequence in K has a convergent subsequence
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whose limit is in K.

Proof.

¡ If. Consider an arbitrary open covering of K. Clearly we can assume that it is a
countable covering: K � [i=11 Ui. Denote Vi := [j=1i Uj. Ntoe that V1 � V2 � V3 � ���.
If there is a i such that K � Vi then we have a �nite subcover. Otherwise we have a
sequence fxng�K such that xn2/ Vn. By assumption it has a convergent subsequence
xnk¡! x02K. There is a m02N such that x02 Vm0. As Vm0 is open, there is k02N
such that xnk2Vm0 for all k >k0. Now again because K �[i=11 Vi, there are m1; :::; mk0

such that xn12Vm1; :::; xnk02Vmk0
. Finally let M :=max fm0;m1; :::; mk0g we see that

xnk2VM for all k 2N. Contradiction.

¡ Only if. Let K be compact. Let fxng be an arbitrary sequence in K. Assume the
contrary, that is fxng does not have any convergent subsequence whose limit is in K.
Thus we can assume that xi=/ xj whenever i=/ j.

Under such assumptions, for any y 2K, there is r(y)> 0 such that

B(y) :=Br(y)(y)\fxng� fyg: (7)

Clearly K �B(y). By compactness of K there is a �nite sub-cover:

K �Br(y1)(y1)[ ��� [Br(yk)(yk): (8)

In particular

fxng�Br(y1)(y1)[ ��� [Br(yk)(yk): (9)

Now by (7) there holds fxng�fy1; :::; ykg. Contradiction. �

� Heine-Borel. A set K �RN is compact if and only if it is both closed and bounded.

Exercise 6. Prove thatK�RN is closed and bounded if and only if every sequence in K has a convergent
subsequence whose limit is in K. Thus proving Heine-Borel.

� Connectness.

� De�nition. A set A is connected if and only if there do not exist open sets U ; V such that
A�U [V and U \V =?.

Exercise 7. Let A :=
n�

x; sin
�
1

x

��
jx> 0

o
[f(0; y)j ¡16 y6 1g. Is A connected? Justify your answer.

Exercise 8. Let A=A1[A2 where both A1; A2 are closed. Furthermore assume A1\A2=?. Prove or disprove:
A is disconnected.



1. Limit and Continuity of Functions
Please read �2.2�2.4 of Dr. Runde's book.

1.1. De�nitions and basic properties
� Let f :RN 7!RM. We say limx!x0f(x)=L if

8"> 0 9� > 0 0< kx¡x0k<�=)kf(x)¡Lk<": (10)
Note the 0< .

� When limx!x0f(x) = f(x0), we say f is continuous at x0.
Exercise 9. Let g:RN 7!RM ; f :RM 7!RK. Prove or disprove the following statements:

a) If limx!x0g(x)= y0 and limy!y0f(y)=L, then limx!x0f(g(x)) =L;
b) If g(x) is continuous at x0 and f(y) is continuous at y0 := g(x0), then f(g(x)) is continuous at x0.

� Properties of continuous functions.
� Reaches maximum and minimum over compact sets.
� When M =1 enjoys intermediate value property.
� D compact, f continuous, then f(D) compact;
� D connected, f continuous, then f(D) connected.
� U open, f continuous, then f¡1(U) open.
Exercise 10. Let D be compact. Prove or disprove: f¡1(D) is compact.

Exercise 11. Let D be connected. Prove or disprove: f¡1(D) is connected.
Exercise 12. Let U be open. Prove or disprove: f(U) is open.

1.2. Fine properties and pitfalls
� Directional limit.

Example 1. Consider f(x; y)=

(
x y

x2+ y2
(x; y) =/ (0; 0)

0 (x; y) = (0; 0)
. Then we see that

lim
y¡!0

h
lim
x¡!0

f(x; y)
i
= lim
x¡!0

h
lim
x¡!0

f(x; y)
i
=0 (11)

and furthermore lim(x;y)¡!0 along a straight linef(x; y)= 0, but

lim
(x;y)¡!(0;0)

f(x; y) (12)
does not exist.

Exercise 13. Let f :R2 7!R be such that limt¡!0f(x(t); y(t))¡! 0 for every smooth curve (x(t); y(t)) satisfying
limt¡!0 (x(t); y(t))= (0; 0). Prove or disprove: lim(x;y)¡!(0;0)f(x; y)= 0.

Example 2. Consider f(x; y) = (x+ y) sin
¡ 1
x

�
sin

�
1

y

�
with domain f(x; y)j x=/ 0; y =/ 0g. Then we

have
lim

(x;y)¡!(0;0)
f(x; y)= 0 (13)

but
neither lim

y¡!0

h
lim
x¡!0

f(x; y)
i
nor lim

x¡!0

h
lim
x¡!0

f(x; y)
i

(14)

� Darboux functions.
� A function that has the intermediate value property is called a �Darboux function�.

Example 3. Let f(x) :=

(
sin

¡ 1
x

�
x=/ 0

0 x=0
. Then f(x) is Darboux but not continuous.

Remark 4. It is possible to construct a function that is Darboux but is nowhere continuous. An
example is �Conway's base 13 function� which takes every real value in every interval. A very accessible
explanation is available at https://en.wikipedia.org/wiki/Conway_base_13_function.

Exercise 14. Given the above, prove that Conway's base 13 function is nowhere continuous.
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