As the domains and targets of functions in calculus are both subsets of $\mathbb{R}^N = \mathbb{R} \times \cdots \times \mathbb{R}$ (*n* times), we need a better understanding of \mathbb{R}^N .

Note. Please read §1.3–§2.1 of Dr. Runde's notes.

1 Geometry of \mathbb{R}^N .

1.1 N = 1.

- The definition of \mathbb{R} follows the following steps:
 - 1. Define \mathbb{N} ;
 - 2. Define \mathbb{Q}^+ from $\mathbb{N} \times \mathbb{N}$;
 - 3. Great Leap Forward!! Define \mathbb{R}^+ from \mathbb{Q}^+ ;
 - 4. Define \mathbb{R} from \mathbb{R}^+ .

For more details, see my lecture notes of Week 13 of Fall 2013 Math 217.

- Key properties of \mathbb{R} :
 - 1. It is a field, that is you can $+, -, \times, \div$ in it freely (except for \div 0);
 - 2. It is ordered;
 - 3. It is not countable;
 - 4. It has the least upper bound property, that is $\sup A \in \mathbb{R}$ for any $A \subset \mathbb{R}$ that is bounded above.

Exercise 1. Prove that the least upper bound property is equivalent to completeness for \mathbb{R} .

1.2 N > 1.

Key differences between \mathbb{R} and \mathbb{R}^N

- 1. It is not a field (unless N = 2);
- 2. It cannot be ordered naturally and conveniently: There is no continuous bijection from \mathbb{R} to $\mathbb{R}^{N,1}$
- 3. There are some new operations:
 - Inner product:

$$x \cdot y := x_1 y_1 + \dots + x_N y_N. \tag{1}$$

• Norm:

 $\|x\| := \sqrt{x \cdot x}.\tag{2}$

^{1.} The situation changes when we drop either "bijection" or "continuous". -

- Key properties of inner product/norm:
 - i. Cauchy-Schwarz:

$$|x \cdot y| \leqslant ||x|| \, ||y||. \tag{3}$$

Exercise 2. Prove Cauchy-Schwarz through exploring the following fact: $||x + ty|| \ge 0$ for all $t \in \mathbb{R}$. **Exercise 3.** Prove Cauchy-Schwarz by writing $||x||^2 ||y||^2 - |x \cdot y|^2$ into a square.

ii. Triangle inequality:

$$\|x+y\| \le \|x\| + \|y\|. \tag{4}$$

Exercise 4. Prove triangle inequality using Cauchy-Schwarz.

• Cross product (N=3):

$$x \times y := (x_2 y_3 - y_2 x_3, x_3 y_1 - x_1 y_3, x_1 y_2 - x_2 y_1).$$
(5)

• Determinant: There is a unique function

$$\det: \mathbb{R}^N \times \dots \times \mathbb{R}^N \mapsto \mathbb{R} \tag{6}$$

where the Cartesian product involves $N \mathbb{R}^{N}$'s, satisfying

a. det is linear in each of its N variables;

b.
$$det(\cdots, x, \cdots, y, \cdots) = -det(\cdots, y, \cdots, x, \cdots);$$

c. $det(e_1, ..., e_N) = 1$ where e_i is the vector with *i*th component 1 and others 0.

Limits of sequences in \mathbb{R}^N

• Recall the definition of limit of sequences in \mathbb{R} :

$$\lim_{n \to \infty} x_n = x \quad \text{if and only if} \quad \forall \varepsilon > 0 \ \exists N \in \mathbb{N}, \qquad n > N \Longrightarrow |x_n - x| < \varepsilon.$$
(7)

• The generalization to \mathbb{R}^N is immediate after identifying the norm as the counter-part of the absolute value.

• Note that if
$$x^{(n)} := \left(x_1^{(n)}, ..., x_N^{(n)}\right)$$
, then $x^{(n)} \longrightarrow x^{(0)}$ is equivalent to $x_i^{(n)} \longrightarrow x_i^{(0)}$ for all $i = 1, 2, ..., N$.

- Almost every result about sequence convergence in \mathbb{R} can be generalized to \mathbb{R}^N .
 - Cauchy sequence.
 - \circ Bolzano-Weierstrass.

Theorem 1. Every bounded, infinite subset $S \subset \mathbb{R}^N$ has a cluster point.

Exercise 5. Critique the following "proof" of Bolzano-Weierstrass. If you think it is not correct, can you fix it?

Proof. We apply induction on N.

- N=1. In this case let $a_0:=\inf S$. If $a_0 \notin S$, then there must be a decreasing sequence $\{x_n\} \subset S$ such that $x_n \searrow a_0$, which means a_0 is the desired cluster point. On the other hand, if $a_0 \in S$, we denote it by x_0 .

Now consider $S_1 := S - \{x_0\}$, and $a_1 := \inf S_1$. If $a_1 \notin S_1$ then it is a cluster point of S. Otherwise denote $x_1 := a_1$. Note that $x_1 > x_0$.

Repeat the above. If at one step we have $a_k \notin S_k$, then a_k is a cluster point. If there is no such k, then we have a sequence $\{x_n\} \subset S$ that is strictly increasing and bounded above. The limit of $\{x_n\}$ now is the desired cluster point.

- Assume that the theorem has been proved for \mathbb{R}^N . Consider $S \subset \mathbb{R}^{N+1}$ that is bounded and infinite. Let $T \subset \mathbb{R}$ be defined as

$$T := \{ x \in \mathbb{R} | (x_1, ..., x_N, x) \in S \text{ for some } x_1, ..., x_N \}.$$
(8)

Then by the N = 1 case there is a sequence in T converging to some $x_{N+1}^{(0)}$. Now denote this sequence by $\{x^{(n)}\}$ where $x^{(n)} := (x_1^{(n)}, ..., x_{N+1}^{(n)})$. We have just shown that $x_{N+1}^{(n)} \longrightarrow x_{N+1}^{(0)}$. By the induction hypothesis there is a subsequence

$$\left(x_{1}^{(n_{k})},...,x_{N}^{(n_{k})}\right) \longrightarrow \left(x_{1}^{(0)},...,x_{N}^{(0)}\right).$$
 (9)

Now
$$x^{(n_k)} \longrightarrow \left(x_1^{(0)}, \dots, x_{N+1}^{(0)}\right)$$
 and the proof is finished.

• Cluster point v.s. limit.

Exercise 6. Prove or disprove:

 x_0 is a cluster point of a set $A \iff$ There is a sequence $\{x_n\} \subset A$ such that $x_n \longrightarrow x_0$. (10)

Exercise 7. Is there any difference between Bolzano-Weierstrass and the following statement: Any bounded sequence in \mathbb{R}^N has a convergent subsequence?