As the domains and targets of functions in calculus are both subsets of R¥ =R x - x R (n
times), we need a better understanding of R¥.

Note. Please read §1.3-§2.1 of Dr. Runde’s notes.

1 Geometry of RM.

1.1 N=1.
e The definition of R follows the following steps:
1. Define N;
2. Define QT from N x N;
3. Great Leap Forward!! Define R* from Q*;
4. Define R from R*.
For more details, see my lecture notes of Week 13 of Fall 2013 Math 217.
e Key properties of R:
1. It is a field, that is you can +, —, X, + in it freely (except for +0);
2. It is ordered;
3. It is not countable;
4. Tt has the least upper bound property, that is sup A € R for any A C R that is bounded above.
Exercise 1. Prove that the least upper bound property is equivalent to completeness for R.
1.2 N>1.
Key differences between R and RV
1. It is not a field (unless N =2);
2. It cannot be ordered naturally and conveniently: There is no continuous bijection from R to R¥.!
3. There are some new operations:
e Inner product:
Ty =x1y1+ - +TNYN- (1)
e Norm:

] := va~z. (2)

1. The situation changes when we drop either “bijection” or “continuous”. -



e Key properties of inner product/norm:
i. Cauchy-Schwarz:
lz-y| <[z [yl (3)

Exercise 2. Prove Cauchy-Schwarz through exploring the following fact: ||z +ty|| >0 for allt € R.

Exercise 3. Prove Cauchy-Schwarz by writing ||z||? ||y||% — |« - y|? into a square.
ii. Triangle inequality:
lz+yl <zl +Iyl- (4)
Exercise 4. Prove triangle inequality using Cauchy-Schwarz.
e Cross product (N =3):
T X Y= (T2 Y3 — Y23, T3 Y1 — T1 Y3, T1 Y2 — T2 Y1) (5)
e Determinant: There is a unique function
det: RN x - x RV = R (6)
where the Cartesian product involves N R™V’s, satisfying
a. det is linear in each of its N variables;
b. det(---, T, Y, ) = —det(---, Y, e, T, )’
c. det(ey,...,en) =1 where ¢; is the vector with ith component 1 and others 0.

Limits of sequences in RY

Recall the definition of limit of sequences in R:

lim z, =z if and only if Ve>03N €N, n>N= |z, —z|<e. (7)

n—oo

e The generalization to RY is immediate after identifying the norm as the counter-part of the absolute
value.

e Note that if 2™ := (x§">, e xg\?)>, then (™ — 29 is equivalent to :EE") —):rl(.o) foralli=1,2,...., N.
e Almost every result about sequence convergence in R can be generalized to R*Y.

o Cauchy sequence.

o Bolzano-Weierstrass.
Theorem 1. Every bounded, infinite subset S C RN has a cluster point.

Exercise 5. Critique the following “proof”’ of Bolzano-Weierstrass. If you think it is not correct, can you
fix it?



Proof. We apply induction on N.

— N =1. In this case let ag:=inf S. If ag ¢ S, then there must be a decreasing sequence {z,, } C S such
that x, \(ag, which means ag is the desired cluster point. On the other hand, if ag € S, we denote
it by xg.

Now consider S1:=S — {xzo}, and a; :=inf S;. If a1 ¢ S1 then it is a cluster point of S. Otherwise

denote z1:=aj. Note that z1 > xg.

Repeat the above. If at one step we have ay, ¢ Sk, then ag is a cluster point. If there is no such k,
then we have a sequence {x,, } C S that is strictly increasing and bounded above. The limit of {z,}
now is the desired cluster point.

—  Assume that the theorem has been proved for RYN. Consider S C RN ! that is bounded and infinite.
Let T'C R be defined as

T:={z €R|(z1,...,zN,z) €S for some z1,...,TN }. (8)

Then by the N =1 case there is a sequence in T' converging to some xg\(?)Jrl Now denote this sequence
by {m(”)} where (") := (mgn), e x%}rl ) ‘We have just shown that mg\?ll —>m5\9)+1. By the induction

hypothesis there is a subsequence

(xgnk),...,xs\’;k)>—>(:c§0)7...,xs\(f))), (9)
Now (™) — (mgo), - xg\%r1> and the proof is finished. g
o Cluster point v.s. limit.
Exercise 6. Prove or disprove:
xo is a cluster point of a set A <= There is a sequence {z,} C A such that z,, — x¢. (10)

Exercise 7. Is there any difference between Bolzano-Weierstrass and the following statement: Any bounded
sequence in RY has a convergent subsequence?
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