
Math 317 Winter 2017 Homework 4 Solutions
Due Thursday Mar. 23, 2017 5pm

� The total points of this homework is 20.

� You need to fully justify your answer � for example, prove that your function indeed has the speci�ed
property � for each problem.
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a) (4 pts) Find the domain A of f(x), that is �nd all x2R such that the series converges.

b) (4 pts) Is the convergence uniform on A? Justify your claim.

Proof.
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We consider three cases:
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b) The convergence is not uniform. We show that the series is not uniformly Cauchy. Let N 2 N be
arbitrary. Let n>N be arbitrary. We have
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The conclusion now follows.
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Question 2. (8 pts) Consider the function de�ned through

f(x) :=
X
n=1
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sin(nx)
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: (4)

a) (4 pts) Find the domain A of f(x);

b) (4 pts) Prove or disprove: f(x) is continuous on A.

Solution.

a) We show that f is de�ned for all x 2 R. We note that
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for all x 2 R. As
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converges, by Comparison
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converges and f(x) is de�ned for all x2R.
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b) As
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test. Since for each �xed n, sin(nx)
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is continuous, f(x) is also continuous.

Question 3. (4 pts) Let fn(x) be continuous on [a; b] and assume fn¡! f uniformly on (a; b). Prove that
fn converges uniformly on [a; b].

Proof. We show that fn(x) is uniformly Cauchy on [a; b]. Let "> 0 be arbitrary. As fn¡! f uniformly on
(a; b), there is N 2N such that for all n>m>N , and for all x2 (a; b)
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As fn(x) is continuous on [a; b], we have
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and the conclusion follows. �
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