Math 317 Winter 2017 Homework 3

Due Thursday Mar. 9, 2017 5pm

- This homework consists of 5 problems of 4 points each. The total is 20.
- You need to fully justify your answer for example, prove that your function indeed has the specified property for each problem.

QUESTION 1. (4 PTS) Prove that $\sum_{n=1}^{\infty} n^3 e^{-n}$ converges.

QUESTION 2. (4 PTS) Find all values of p > 0 such that $\sum_{n=1}^{\infty} p^n n^p$ is convergent. Justify your claim.

QUESTION 3. (4 PTS) Prove that if $\sum_{n=1}^{\infty} a_n$ converges, then for every fixed $k \in \mathbb{N}$, there holds

$$\lim_{n \to \infty} \left(a_n + \dots + a_{n+k} \right) = 0. \tag{1}$$

Then find a divergent series $\sum_{n=1}^{\infty} a_n$ such that for every fixed $k \in \mathbb{N}$, $\lim_{n \to \infty} (a_n + \dots + a_{n+k}) = 0$.

QUESTION 4. (4 PTS) Assume that $\sum_{n=1}^{\infty} a_n^2$ and $\sum_{n=1}^{\infty} b_n^2$ converge. Prove that $\sum_{n=1}^{\infty} \frac{(n+1)^2 a_n b_n}{n^2}$ converges.

QUESTION 5. (4 PTS) Prove or disprove: $a_n > 0$, $a_n \longrightarrow 0$, then $\sum_{n=0}^{\infty} (-1)^n a_n$ converges.