
Math 317 Winter 2017 Homework 3
Due Thursday Mar. 9, 2017 5pm

� This homework consists of 5 problems of 4 points each. The total is 20.

� You need to fully justify your answer � for example, prove that your function indeed has the speci�ed
property � for each problem.

Question 1. (4 pts) Prove that
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Question 2. (4 pts) Find all values of p> 0 such that
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1 pnnp is convergent. Justify your claim.

Question 3. (4 pts) Prove that if
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(an+ ���+ an+k)= 0: (1)

Then �nd a divergent series
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Question 4. (4 pts) Assume that
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verges.

Question 5. (4 pts) Prove or disprove: an> 0, an¡! 0, then
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1 (¡1)n an converges.
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