Math 317 Winter 2017 Homework 2 Solutions

Due Thursday Feb. 16, 2017 5pm

- This homework consists of 5 problems of 4 points each. The total is 20.
- You need to fully justify your answer for example, prove that your function indeed has the specified property for each problem.
- This homework covers material up to and including Jan. 26 lecture.

QUESTION 1. (4 PTS) Computer $\int_C F \cdot dx$ where $F = (e^x, e^y, x + y)$ and C is the triangle joining (1, 0, 0), (0, 1, 0), (0, 0, 1) oriented in the counterclockwise direction when viewed from above.

Solution. Let the three points be A, B, C. Then we have

$$\int_{C} F \cdot dx = \int_{AB} F \cdot dx + \int_{BC} F \cdot dx + \int_{CA} F \cdot dx.$$
(1)

• AB is parametrized by x(t) = (1 - t, t, 0) for $0 \le t \le 1$. Thus

$$\int_{AB} F \cdot dx = \int_0^1 F(1-t,t,0) \cdot (-1,1,0) dt = 0.$$
(2)

• BC is parametrized by x(t) = (0, 1 - t, t) for $0 \le t \le 1$, and

$$\int_{BC} F \cdot dx = \int_0^1 F(0, 1-t, t) \cdot (0, -1, 1) dt = \frac{3}{2} - e.$$
(3)

• Similarly

$$\int_{CA} F \cdot \mathrm{d}x = -\frac{3}{2} + e. \tag{4}$$

Therefore the answer is 0.

QUESTION 2. (4 PTS) Calculate $\int_S (z - x) dS$ where S is the portion of the graph of $z = x + y^2$ where $0 \le x \le y, 0 \le y \le 1$.

Solution. The parametrization is naturally $\begin{pmatrix} x \\ y \\ x+y^2 \end{pmatrix}$ with $K = \{(x, y) | 0 \le x \le y, 0 \le y \le 1\}$. Then we have

$$\int_{S} (z-x) \, \mathrm{d}S = \int_{K} \left[(x+y^{2}) - x \right] \left\| \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 2y \end{pmatrix} \right\| \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_{0}^{1} \left[\int_{0}^{y} y^{2} \sqrt{2+4y^{2}} \, \mathrm{d}x \right] \, \mathrm{d}y$$

$$= \int_{0}^{1} y^{3} \sqrt{2+4y^{2}} \, \mathrm{d}y$$

$$\frac{u=2+4y^{2}}{2} = \frac{1}{32} \int_{2}^{6} (u-2) \sqrt{u} \, \mathrm{d}u$$

$$= \frac{1}{30} \left(6\sqrt{6} + \sqrt{2} \right).$$
(5)

QUESTION 3. (4 PTS) Calculate $\int_S F \cdot dS$ where F = (0, 0, x) and S is the surface with parametrization $\Phi(u, v) = (u^2, v, u^3 - v^2)$ for $0 \le u \le 1, 0 \le v \le 1$ and oriented by upward-pointing normal vectors.

Solution. We have

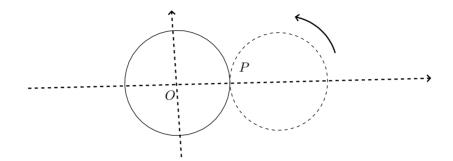
$$N(u,v) = \pm \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v} = \pm \begin{pmatrix} -3 u^2 \\ 4 u v \\ 2 u \end{pmatrix}.$$
 (6)

As $0 \le u \le 1$ we have $2u \ge 0$. Therefore we should take + for N(u, v), that is $N(u, v) = \begin{pmatrix} -3u^2 \\ 4uv \\ 2u \end{pmatrix}$.

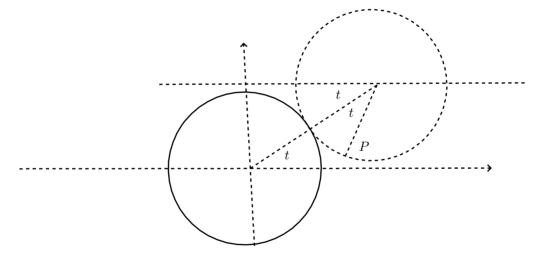
Thus

$$\int_{S} F \cdot \mathrm{d}S = \int_{[0,1]^2} \begin{pmatrix} 0\\0\\u^2 \end{pmatrix} \cdot \begin{pmatrix} -3u^2\\4uv\\2u \end{pmatrix} \mathrm{d}u \,\mathrm{d}v = \frac{1}{2}.$$
(7)

QUESTION 4. (4 PTS) Write down a parametrized representation of the trajectory of a fixed point P on a unit circle rolling outside another unit circle centered at the origin. Then calculate the arc length of the curve.



Solution. Let t be the angle as shown in the plot below.



We see that the trajectory of P is given by

$$2(\cos t, \sin t) - (\cos 2t, \sin 2t).$$
(8)

We have

$$x'(t) = 2\left(-\sin t + \sin 2t, \cos t - \cos 2t\right)$$
(9)

which leads to

$$\|x'(t)\| = 2\sqrt{2 - 2\cos t} \tag{10}$$

and the arc length is $16.^1$

^{1.} The detaills are omitted here as the integral has already been calculated in the lecture note by Dr. Runde.

QUESTION 5. (4 PTS) Let $y = (y_1, y_2, y_3)$, $z = (z_1, z_2, z_3)$ be two points on unit sphere centering at the origin. Prove that the shortest path on the sphere connecting them is part of a big circle.

Solution. Let $y = (y_1, y_2, y_3), z = (z_1, z_2, z_3)$ satisfy $y_1^2 + y_2^2 + y_3^2 = z_1^2 + z_2^2 + z_3^2 = 1$. Among all curves with $x(a) = y, x(b) = z, x_1^2(t) + x_2^2(t) + x_3^2(t) = 1$, find the one minimizing the integral

$$L := \int_{a}^{b} \|x'(t)\| \,\mathrm{d}t.$$
(11)

Our goal is to show that the minimizing curve is the great arc connecting y, z. Due to the symmetry of the problem, it suffices to prove this for y = (0, 1, 0) and z = (0, 0, 1).

Thus all we need to show is $L \ge \pi/2$. For arbitrary x(t) on the sphere connecting y, z, we define a new curve:

$$X(t) = (0, r(t), x_3(t))$$
(12)

where $r(t) := (x_1(t)^2 + x_2(t)^2)^{1/2}$. We notice that X(t) connects y, z and covers the great arc connecting y, z. Therefore the arc length of X(t) is no less than $\pi/2$. For X(t) we calculate

$$\frac{\pi}{2} \leq L_X = \int_a^b \sqrt{r'(t)^2 + x_3'(t)^2} \, \mathrm{d}t
= \int_a^b \sqrt{\frac{(x_1(t) x_1'(t) + x_2(t) x_2'(t))^2}{x_1(t)^2 + x_2(t)^2}} + x_3'(t)^2 \, \mathrm{d}t
\leq \int_a^b \sqrt{x_1'(t)^2 + x_2'(t)^2 + x_3'(t)^2} \, \mathrm{d}t = L.$$
(13)