Math 317 Winter 2017 Homework 2 Solutions

DuE THURSDAY FEB. 16, 2017 5PM

e This homework consists of 5 problems of 4 points each. The total is 20.

e You need to fully justify your answer — for example, prove that your function indeed has the specified
property — for each problem.

e This homework covers material up to and including Jan. 26 lecture.

QUESTION 1. (4 pTS) Computer fC F-dz where F = (e*,e¥,x+y) and C is the triangle joining (1,0,0),
(0,1,0),(0,0,1) oriented in the counterclockwise direction when viewed from above.

Solution. Let the three points be A, B, C. Then we have

/F~dx:/ F-dx—|—/ F'dx—l-/ F.dx. (1)
c AB BC cA

e AB is parametrized by z(t)=(1—1t,¢,0) for 0 <t < 1. Thus

1
/ F-dx:/ F(1—t,¢,0)-(~1,1,0)dt=0. (2)
AB 0
e B( is parametrized by z(t)= (0,1 —¢,¢) for 0<¢t<1, and
! 3
/ F-dx:/ F0,1—4,8)-(0,~1,1)dt =5 —e. (3)
BC 0 2
e Similarly
/ F-dx:—§+e. (4)
cA 2

Therefore the answer is 0.

QUESTION 2. (4 pt1s) Calculate fs (z — x) dS where S is the portion of the graph of z = x + y? where
O0<z<y,0<y<l.

Solution. The parametrization is naturally ( T; ) with K ={(z,y)|0<2<y,0<y<1}. Then we have

x+y?
1 0
/ (z—z)dS = / [(z+y?)—z]||| 0 |x]| 1 dzdy
S K 1 2y

1 Yy
/{/ y?\/2+4y*dr | dy
0 0
1
= /y3\/2+4y2dy
0

u=2-+4y2 1 6

3, (u—2)udu

= g (6VB+V2). (5)

QUESTION 3. (4 pTs) Calculate fS F - dS where F = (0,0, 2) and S is the surface with parametrization
O (u,v) = (u?,v,u®—v?%) for 0<u<1,0<v<1 and oriented by upward-pointing normal vectors.

Solution. We have

0o 9D —3u?
N('U/7 'U) = i% X % =4 42uu'l) . (6)
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—3u?
As 0<u <1 we have 2u > 0. Therefore we should take + for N(u, v), that is N(u, v) —( duv )

2u
Thus
0 —3u? 1
/F'dS:/ 0 || 4uv |dudv=<. (7)
s 0,12 \ 2 24 2

QUESTION 4. (4 pTS) Write down a parametrized representation of the trajectory of a fized point P on a
unit circle rolling outside another unit circle centered at the origin. Then calculate the arc length of the curve.

We see that the trajectory of P is given by

2 (cost,sint) — (cos2t,sin2t). (8)
We have
2'(t)=2(—sint+sin2t¢,cost — cos 2t) 9)
which leads to
&' (t)| =2 v2—2Zcost (10)

and the arc length is 16.1

1. The detaills are omitted here as the integral has already been calculated in the lecture note by Dr. Runde.
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QUESTION 5. (4 PTS) Let y=(y1, Y2, y3), 2= (21, 22, 23) be two points on unit sphere centering at the origin.
Prove that the shortest path on the sphere connecting them is part of a big circle.

Solution. Let y= (y1, Y2, Y3), 2 = (21, 20, 23) satisfy yf + y3 + y3 =2 + 23 + 23 = 1. Among all curves with
z(a) =1y, x(b) =z, 23(t) + 23(t) + 23(t) = 1, find the one minimizing the integral

b
L ::/ 2/(8)]] d. (11)

Our goal is to show that the minimizing curve is the great arc connecting y, z. Due to the symmetry of the
problem, it suffices to prove this for y=(0,1,0) and z= (0,0, 1).

Thus all we need to show is L > 7 /2. For arbitrary z(t) on the sphere connecting y, z, we define a new
curve:

X(t) = (0,r(t), z3(t)) (12)

where r(t) := (z1(t)2 4 x2(t)%)/2. We notice that X (t) connects %, z and covers the great arc connecting v,
z. Therefore the arc length of X () is no less than 7 /2. For X (t) we calculate

<Lx = /b r'(t)? + x5(t)* dt
_ [0 [ i) +aat) 25(0)
-/ \/ (0 + ()t

2 + $2(t)2

o

N

b
/ IO T O F ohO)  dt = L. (13)



