Math 317 Winter 2017 Homework 1

Due Thursday Feb. 2, 2017 5pm

- This homework consists of 5 problems of 4 points each. The total is 20.
- You need to fully justify your answer for example, prove that your function indeed has the specified property for each problem.
- This homework covers material up to and including Jan. 26 lecture.

QUESTION 1. (4 PTS) Consider the function $T: \mathbb{R}^2 \mapsto \mathbb{R}^2$ defined through

$$T(x, y) = \begin{pmatrix} x^2 - y^2 \\ 2 x y \end{pmatrix}.$$
 (1)

Show that T does not have an inverse function on any open set $U \ni (0,0)$.

Solution. Let U be an open set containing (0,0). Then there is $\varepsilon_0 > 0$ such that $B_{\varepsilon_0}(0) \subseteq U$. In particular there are $(x_0, y_0) \in U$ such that $(-x_0, -y_0) \in U$ too. As $T(x_0, y_0) = T(-x_0, -y_0)$ there can be no inverse function on U.

QUESTION 2. (4 PTS) Consider the function $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined through

$$T(x, y) = \begin{pmatrix} x^2 - y^2 \\ 2 x y \end{pmatrix}.$$
 (2)

We accept that T has an inverse function near x = 1, y = 1. Calculate the Jacobian matrix of the inverse function at the corresponding point.

Solution. We have

$$T(1,1) = \begin{pmatrix} 0\\2 \end{pmatrix}.$$
 (3)

Denote by G the inverse function of T around (1,1). Then G is defined around (0,2), and furthermore

$$J_G(0,2) = J_T(1,1)^{-1} = \begin{pmatrix} 2 & -2 \\ 2 & 2 \end{pmatrix}^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$
 (4)

QUESTION 3. (4 PTS) Let an implicit function Y(x) be defined through

$$y^3 + x^2 y^2 - x y + x^4 = 0 \tag{5}$$

Calculate Y'(0), Y''(0), Y'''(0).

Solution. Replacing y by Y we have

$$Y^3 + x^2 Y^2 - x Y + x^4 = 0. ag{6}$$

Taking derivative

$$3Y^{2}Y' + 2xY^{2} + 2x^{2}YY' - Y - xY' + 4x^{3} = 0.$$
(7)

Setting x = 0 and using Y(0) = 0 we obtain 0 = 0.

:

Taking derivative again, we obtain

$$3Y^{2}Y'' + 6YY'^{2} + 2Y^{2} + 8xYY' + 2x^{2}Y'^{2} + 2xYY'' - 2Y' - xY'' + 12x^{2} = 0.$$
(8)

Setting x = 0 we have Y' = 0.

Now we notice the following. Each of the brown terms involve a product of Y terms. If we differentiate them, we will have a sum of products of Y and its derivatives, with at least one factor either Y or Y'. Therefore, if we differentiate one more time and set x = 0, we reach

$$-3Y'' = 0 \Longrightarrow Y'' = 0. \tag{9}$$

By similar argument, one more differentiation gives

$$-4Y''' + 24 = 0 \Longrightarrow Y'''(0) = 6. \tag{10}$$

QUESTION 4. Let $f: \mathbb{R}^3 \mapsto \mathbb{R}$ be a C^1 function. Consider the equation f(x, y, z) = 0. Assume that $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial z}, \frac{\partial f}{\partial z}$ are all nonzero at (x_0, y_0, z_0) and thus around (x_0, y_0, z_0) we can define x as an implicit function of y, z, y as an implicit function of x, z, and z as an implicit function of x, y. Prove that $\frac{\partial x}{\partial y}, \frac{\partial y}{\partial z}, \frac{\partial z}{\partial x} = -1$.

Solution. Let x = X(y, z). Differentiating f(X(y, z), y, z) = 0 we have

$$\frac{\partial X}{\partial y} = -\left(\frac{\partial f}{\partial x}\right)^{-1} \frac{\partial f}{\partial y}.$$
(11)

Similarly we have

$$\frac{\partial Y}{\partial z} = -\left(\frac{\partial f}{\partial y}\right)^{-1} \frac{\partial f}{\partial z}, \qquad \frac{\partial Z}{\partial x} = -\left(\frac{\partial f}{\partial z}\right)^{-1} \frac{\partial f}{\partial x}.$$
(12)

Clearly we have $\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = -1.$

QUESTION 5. Find the maximum value of $\left|\sum_{k=1}^{N} a_k x_k\right|$ subject to $\sum_{k=1}^{N} x_k^2 = 1$ using the Lagrange multiplier method.

Solution. Denote

$$R^2 := \sum_{k=1}^{N} a_k^2.$$
(13)

Let

$$f(x_1, ..., x_N) := \left(\sum_{k=1}^N a_k x_k\right)^2.$$
 (14)

We define the Lagrange function

$$L(x_1, ..., x_N, \lambda) := \left(\sum_{k=1}^N a_k x_k\right)^2 - \lambda \left(\sum_{k=1}^N x_k^2 - 1\right).$$
(15)

The equations for stationary points are then

$$2a_1\sum_{k=1}^{N}a_kx_k - 2\lambda x_1 = \frac{\partial L}{\partial x_1} = 0, \qquad (16)$$

$$2 a_2 \sum_{k=1}^{N} a_k x_k - 2 \lambda x_2 = \frac{\partial L}{\partial x_2} = 0, \qquad (17)$$

$$\vdots$$

$$2 a_N \sum_{k=1}^N a_k x_k - 2 \lambda x_N = \frac{\partial L}{\partial x_N} = 0.$$
(18)

We see that there are two cases:

- i. $\sum_{k=1}^{N} a_k x_k = 0$. In this case we see that $f(x_1, ..., x_N) = 0$ so this corresponds to a minimizer.
- ii. $\sum_{k=1}^{N} a_k x_k \neq 0$. In this case we have

$$\frac{a_1}{x_1} = \frac{a_2}{x_2} = \dots = \frac{a_N}{x_N} = \frac{\lambda}{\sum_{k=1}^N a_k x_k}$$
(19)

which gives $f(x_1, ..., x_N) = R^2$.

As $\sum_{k=1}^{N} x_k^2 = 1$ is a smooth compact set, f attains its minimum and maximum at stationary points. Consequently the maximum of f is $\sum_{k=1}^{N} a_k^2$ and the maximum of $\left|\sum_{k=1}^{N} a_k x_k\right|$ is $\sqrt{\sum_{k=1}^{N} a_k^2}$.