Problem 1. Determine the convergence set of the given power series.

a) \(\sum_{n=1}^{\infty} \frac{3}{n^8} (x-2)^n \),

b) \(\sum_{n=0}^{\infty} 2^n x^{3n} \).

Solution.

a) For this power series we have \(a_0 = 0, a_n = \frac{3}{n^8} \) for \(n \geq 1 \). As the ratio test is about \(n \to \infty \), \(a_0 \) doesn’t matter. We have

\[
\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)^8}{n^8} \right| = \left| \frac{n+1}{n} \right|^8 \to 1 \quad \text{as} \quad n \to \infty.
\]

So the radius of convergence is \(\rho = 1^{-1} = 1 \). The power series converges for \(|x-2|<1 \) and diverges for \(|x-2|>1 \).

Now check \(|x-2|=1 \) that is \(x=1, 3 \). In this case we have

\[
\left| \frac{3}{n^8} (x-2)^n \right| = \frac{3}{n^8} |x-2|^n = \frac{3}{n^8}.
\]

As

\[
\sum_{n=1}^{\infty} \frac{3}{n^8}
\]

converges, the original power series also converges at \(x=1, 3 \). (Here we have used the following property of infinite sum: If \(|a_n| \leq b_n \) and \(\sum b_n \) converges, then \(\sum a_n \) converges too.)

Summarizing, the convergence set is \(|x-2| \leq 1 \) or equivalently \(1 \leq x \leq 3 \).

b) For this one we first set \(t = x^3 \) and consider

\[
\sum 2^n t^n.
\]

We have \(a_n = 2^n \) so

\[
\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{2^{(n+1)}}{2^n} \right| = 2 \to 2 \quad \text{as} \quad n \to \infty.
\]

Thus the power series in \(t \) has radius of convergence \(1/2 \), that is converges for \(|t| < 1/2 \) and diverges when \(|t| > 1/2 \). When \(t = \pm 1/2 \) we have

\[
\sum 2^n t^n |t=1/2 \implies \sum_{n=0}^{\infty} 1; \quad \sum 2^n t^n |t=-1/2 \implies \sum (-1)^n
\]

both clearly diverge. So the convergence set for \(t \) is \(|t| < 1/2 \).

As \(t = x^3 \), the convergence set for \(x \) is

\[
|x| < \left(\frac{1}{2} \right)^{1/3}.
\]

Problem 2. Let \(f(x) \) and \(g(x) \) be defined by the following two power series:

\[
\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n, \quad \sum_{n=0}^{\infty} 2^n x^{n+1}.
\]

a) For what \(x \) are \(f \) and \(g \) both defined? (Only for these \(x \)'s is \(f \pm g, fg, \) etc meaningful).

b) Obtain the power series expansion of \(3f-2g \). Your answer should have generic term \(x^n \).

c) Find the first three nonzero terms in the power series expansion of \(fg \).

d) Find the first three terms in the ratio \(f/g \).
e) Find the power series expansion for \(f' \) and \(\int_{0}^{x} g \). Your answer should have generic term \(x^n \).

Solution.

a) We easily obtain that the radii of convergence are 1 and \(\frac{1}{2} \). We can also check that the first power series converges for \(x = 1 \) but diverges for \(x = -1 \), while the second power series diverges for both \(x = \pm \frac{1}{2} \). So \(f \) is defined for \(-1 < x \leq 1\) while \(g \) for \(|x| < 1/2 \). Therefore both are defined over \(|x| < 1/2 \).

b) We have

\[
3 f - 2 g \sim 3 \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n - 2 \sum_{n=0}^{\infty} 2^n x^{n+1}
\]

\[
= \sum_{n=1}^{\infty} \frac{3 (-1)^n}{n} x^n - \sum_{n=0}^{\infty} 2^{n+1} x^{n+1}
\]

(9)

Now we shift index in the 2nd sum: (Setting \(m = n + 1 \))

\[
\sum_{n=0}^{\infty} 2^{n+1} x^{n+1} = \sum_{m=1}^{\infty} 2^m x^m = \sum_{m=1}^{\infty} 2^m x^m.
\]

(10)

Now rename \(m \) to \(n \):

\[
\sum_{m=1}^{\infty} 2^m x^m = \sum_{n=1}^{\infty} 2^n x^n.
\]

(11)

Thus

\[
3 f - 2 g \sim \sum_{n=1}^{\infty} \frac{3 (-1)^n}{n} x^n - \sum_{n=1}^{\infty} 2^n x^n = \sum_{n=1}^{\infty} \left[\frac{3 (-1)^n}{n} - 2^n \right] x^n.
\]

(12)

c) To do this the best way is to first expand \(f \) and \(g \): (Since the first three terms are required, we expand to 3 terms first and see if that’s enough)

\[
\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n = -x + \frac{x^2}{2} - \frac{x^3}{3} + \cdots; \quad \sum_{n=0}^{\infty} 2^n x^{n+1} = x + 2x^2 + 4x^3 + \cdots
\]

(13)

Now take the product:

\[
f g \sim \left(-x + \frac{x^2}{2} - \frac{x^3}{3} + \cdots \right) \left(x + 2x^2 + 4x^3 + \cdots \right)
\]

\[
= -x^2 + \left[\frac{x^2}{2} \cdot x + (-x) \cdot 2x^2 \right] + \left[\left(-\frac{x^3}{3} \right) x + \frac{x^2}{2} \cdot 2x^2 + (-1)4x^3 \right] + \text{higher order terms}
\]

\[
= -x^2 + \frac{3}{2} x^3 - \frac{10}{3} x^4 + \cdots.
\]

We already have three nonzero terms, so done.

d) Again we expand the power series to first three terms:

\[
\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n = -x + \frac{x^2}{2} - \frac{x^3}{3} + \cdots; \quad \sum_{n=0}^{\infty} 2^n x^{n+1} = x + 2x^2 + 4x^3 + \cdots
\]

(14)

Long division then gives (see 8.2 16):

\[
\frac{f}{g} \sim -1 + \frac{5}{2} x - \frac{4}{3} x^2 + \cdots
\]

(15)

Note that both power series are 0 at \(x = 0 \) due to

\[
\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n = \left(-1 + \frac{x}{2} - \frac{x^2}{3} + \cdots \right); \quad \sum_{n=0}^{\infty} 2^n x^{n+1} = x \left(1 + 2x + 4x^2 + \cdots \right)
\]

(16)
However the two x's cancel in f/g. So f/g is still well-defined.

e) We have
\[f' \sim \sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n} x^n \right]' = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} n x^{n-1} = \sum_{n=1}^{\infty} (-1)^n x^{n-1}. \] (17)

Now we shift index. Let $m = n - 1$ we have
\[\sum_{n=1}^{\infty} (-1)^n x^{n-1} = \sum_{m=1}^{\infty} (-1)^{m+1} x^m = \sum_{m=0}^{\infty} (-1)^{m+1} x^m. \] (18)

Renaming m to n we reach
\[f' \sim \sum_{n=0}^{\infty} (-1)^{n+1} x^n. \] (19)

For g we have
\[\int_0^x g(t) \, dt \sim \int_0^x \sum_{n=0}^{\infty} 2^n t^{n+1} \, dt = \sum_{n=0}^{\infty} 2^n \int_0^x t^{n+1} \, dt = \sum_{n=0}^{\infty} 2^n \frac{x^{n+2}}{n+2}. \] (20)

Shifting index $n + 2 \rightarrow n$ we finally obtain
\[\int_0^x g(t) \, dt \sim \sum_{n=2}^{\infty} \frac{2n-2}{n} x^n. \] (21)

Problem 3. (8.2 36) Let $f(x)$ and $g(x)$ be analytic at x_0. Determine whether the following statements are always true or sometimes false.

a) $3f(x) + g(x)$ is analytic at x_0;

b) $f(x)/g(x)$ is analytic at x_0;

c) $f'(x)$ is analytic at x_0;

d) $(f(x))^3 - f_{x_0}^x g(t) \, dt$ is analytic at x_0.

Solution.

a) True; b) False (because $g(x_0)$ may be 0); c) True; d) True.

Problem 4. Is
\[\frac{e^x - \sin x - \cos x^2}{x^2} \] (22)

analytic at 0 or not?

Solution. We know that e^x, $\sin x$, $\cos x^2$, x^2 are all analytic for all x. However $x^2 = 0$ at $x = 0$ so it is still possible that the ratio is not analytic at $x = 0$. On the other hand we easily check that $e^x - \sin x - \cos x^2 = 0$ at $x = 0$ too. So it is also possible that the ratio is analytic at $x = 0$.

To get a definite answer we expand the numerator: For all x the following holds true:
\[e^x - \sin x - \cos x^2 = \left[1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \ldots \right] - \left[x - \frac{x^3}{6} + \ldots \right] - \left[1 - \frac{(x^2)^2}{2} + \ldots \right] = x^2 \left[\frac{1}{2} + \frac{x}{3} + \frac{13}{24} x^2 + \ldots \right] \] (23)

which leads to
\[\frac{e^x - \sin x - \cos x^2}{x^2} = \frac{1}{2} + \frac{x}{3} + \frac{13}{24} x^2 + \ldots \] (24)

so f/g is analytic at $x = 0$.

Problem 5. Determine all the singular points for the given differential equations. Then determine the lower bound of the radius of convergence for the power series solutions at $x_0 = 2$.

a) $(1 + x^3) y'' - xy'y' + 3 x^2 y = 0;$
b) \(\sin(x)\, y'' + e^x\, y = 0; \)

c) \(\sin(x)\, y'' - (\ln x)\, y = 0. \)

d) \(\sin(x)\, y'' + y = 0. \)

Solution.

a) Write the equation into standard form:

\[
y'' - \frac{x}{(1 + x^3)} \, y' + \frac{3\, x^2}{1 + x^3} \, y = 0. \quad (25)
\]

So \(p(x) = -\frac{x}{(1 + x^3)}, \quad q(x) = \frac{3\, x^2}{1 + x^3}. \) As both are ratios of polynomials, which are analytic everywhere, we only need to check the zeroes of \(1 + x^3. \)

To solve \(1 + x^3 = 0, \) first observe that \(x_1 = -1 \) is a solution. Now factorize

\[
1 + x^3 = (x + 1)\, (x^2 - x + 1) \implies x_{2,3} = \frac{1 \pm \sqrt{3} \, i}{2}. \quad (26)
\]

As \(x \) and \(3\, x^2 \) do not vanish at \(x_1, x_2, x_3, \) \(p(x), q(x) \) are not analytic at \(x_1, x_2, x_3. \) Thus the singular points are

\[
-1, \frac{1 \pm \sqrt{3} \, i}{2}. \quad (27)
\]

To find the lower bound of the radius of convergence at \(x_0 = 2, \) we calculate the distances:

\[
|2 - (-1)| = 3; \quad \left| 2 - \left(\frac{1 \pm \sqrt{3} \, i}{2} \right) \right| = \frac{3}{2} \mp \frac{\sqrt{3}}{2} \, i = \sqrt{3}. \quad (28)
\]

The shortest distance is \(\sqrt{3}. \) So the lower bound for the radius of convergence is \(\sqrt{3}. \)

b) Write to standard form

\[
y'' + \frac{e^x}{\sin x} \, y = 0. \quad (29)
\]

Both \(e^x \) and \(\sin x \) are analytic everywhere so we check zeroes of \(\sin x \) which is \(n\, \pi \) for integers \(n. \)

As \(e^x \neq 0 \) at \(x = n\, \pi \) for any \(n, \) the singular points are \(\{ n\, \pi \} \) for integers \(n. \)

It is easy to see that the smallest \(|2 - n\, \pi| \) happens when \(n = 1. \) So the lower bound is \(|2 - \pi| = \pi - 2. \)

c) The equation is already in standard form \(y'' - (\ln x)\, y = 0. \) The singular points are \(x \leq 0. \) The shortest distance of \(x_0 = 2 \) to this singular point set is clearly \(2. \) So the lower bound is \(2. \)

d) The equation \(y'' - (\tan x)\, y' + y = 0 \) is already in standard form. Its singular points are those points where \(-\tan x = -\frac{\sin x}{\cos x} \) is not analytic. We find out that these points are those such that \(\cos x = 0: \quad x = (n + 1/2)\, \pi. \) The shortest distance of \(2 \) to these points is reached at \(n = 0. \) Thus the lower bound is \(2 - \pi/2. \)

Problem 6. (8.3 14) Find at least the first four nonzero terms in a power series expansion about \(x = 0 \) for a general solution to the given differential equation.

\[
(x^2 + 1)\, y'' + y = 0. \quad (30)
\]

Solution. Since we only need first four terms, we write \(y \) up to four terms (Note that if one of \(a_0 \cdots a_3 \) turns out to be 0, we need to return here and expand more):

\[
y = a_0 + a_1\, x + a_2\, x^2 + a_3\, x^3 \cdots \quad (31)
\]

and substitute into the equation.

\[
(x^2 + 1)\, [2\, a_2 + 6\, a_3\, x \cdots] + [a_0 + a_1\, x + a_2\, x^2 + a_3\, x^3 + \cdots] = 0. \quad (32)
\]
Expanding the left hand side we reach:
\[0 = x^2 [2a_2 + 6a_3 x + \ldots] + [2a_2 + 6a_3 x + \ldots] + [a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots] = (2a_2 + a_0) + (6a_3 + a_1) x + \ldots\] \hspace{1cm} (33)

Thus
\[2a_2 + a_0 = 0, \quad 6a_3 + a_1 = 0\] \hspace{1cm} (34)

and we have \(y\) up to first four nonzero terms:
\[y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots = a_0 + a_1 x - a_0 \frac{x^2}{2} - a_1 \frac{x^3}{6} + \ldots\] \hspace{1cm} (35)

Problem 7. (8.3 21) Solve
\[y'' - x y' + 4 y = 0.\] \hspace{1cm} (36)

Solution. Since we are asked to “solve”, we need to write
\[y = \sum_{n=0}^{\infty} a_n x^n\] \hspace{1cm} (37)

and substitute into the equation. We have
\[y'' = \sum_{n=2}^{\infty} n (n - 1) a_n x^{n-2} = \sum_{n=0}^{\infty} (n + 2) (n + 1) a_{n+2} x^n.\] \hspace{1cm} (38)

\[x y' = x \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=1}^{\infty} n a_n x^n\] \hspace{1cm} (39)

after index shifting. The equation now reads
\[\sum_{n=0}^{\infty} (n + 2) (n + 1) a_{n+2} x^n - \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=0}^{\infty} 4 a_n x^n = 0.\] \hspace{1cm} (40)

As the sums start from different values, we have to break the two \(\sum_{n=0}^{\infty}\) into \(n = 0\) term + \(\sum_{n=1}^{\infty}\) :
\[\sum_{n=0}^{\infty} (n + 2) (n + 1) a_{n+2} x^n = 2a_2 + \sum_{n=1}^{\infty} (n + 2) (n + 1) a_{n+2} x^n;\] \hspace{1cm} (41)

\[\sum_{n=0}^{\infty} 4 a_n x^n = 4a_0 + \sum_{n=1}^{\infty} 4 a_n x^n.\] \hspace{1cm} (42)

Now the equation can be written as
\[2a_2 + 4a_0 + \sum_{n=1}^{\infty} [(n + 2) (n + 1) a_{n+2} - (n - 4) a_n] x^n = 0\] \hspace{1cm} (43)

which gives the following recurrence relations:
\[2a_2 + 4a_0 = 0;\] \hspace{1cm} (44)

\[(n + 2) (n + 1) a_{n+2} - (n - 4) a_n = 0 \implies a_{n+2} = \frac{n - 4}{(n + 2) (n + 1)} a_n\] \hspace{1cm} (45)

Clearly \(a_0\) determines \(a_2\), then \(a_4\), then \(a_6\), ... and \(a_1\) determines \(a_3\), \(a_5\), \(a_7\), ...

Looking more closely, we realize that setting \(n = 4\) in the general recurrence relation gives
\[a_6 = \frac{4}{(4 + 2) (4 + 1)} a_4 = 0.\] \hspace{1cm} (46)

And then
\[a_8 = \frac{6 - 4}{(6 + 2) (6 + 1)} a_6 = 0.\] \hspace{1cm} (47)
In general, we have \(a_{2k} = 0 \) for all \(k \geq 3 \). For \(k < 3 \), we have
\[
a_2 = -2a_0, \quad a_4 = \frac{2 - 4}{(2 + 2) (2 + 1)} = -\frac{a_2}{6} = \frac{a_0}{3}.
\]

On the other hand, for odd \(n \), setting \(n = 2k + 1 \), we have
\[
a_{2k+1} = \frac{2k - 5}{(2k+1)(2k)} a_{2k-1} = \frac{(2k - 5)(2k - 7)}{(2k+1)(2k)(2k - 1)(2k - 2)} a_{2k-2} = \ldots = \frac{(2k - 5) \cdots (-1)(-3)}{(2k + 1)!} a_1.
\]

So the solution is
\[
y = a_0 \left[1 - 2x^2 + \frac{x^4}{3} \right] + a_1 \left[x + \sum_{k=1}^{\infty} \frac{(2k - 5) \cdots (-1)(-3)}{(2k + 1)!} x^{2k+1} \right].
\]

Problem 8. (8.3 22) Solve the Airy’s equation:
\[
y'' - xy = 0.
\]

Solution. Write
\[
y = \sum_{n=0}^{\infty} a_n x^n.
\]

Then
\[
y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n.
\]

after index shifting.

On the other hand
\[
x y = \sum_{n=0}^{\infty} a_n x^{n+1} = \sum_{n=1}^{\infty} a_{n-1} x^n
\]

after index shifting.

The equation becomes
\[
\sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n - \sum_{n=1}^{\infty} a_{n-1} x^n = 0.
\]

Since the two sums start from different values, we have to break the first sum into \(n = 0 \) term + \(\sum_{n=1}^{\infty} \):
\[
\sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n = 2a_2 + \sum_{n=1}^{\infty} (n+2)(n+1) a_{n+2} x^n.
\]

Now the equation becomes
\[
2a_2 + \sum_{n=1}^{\infty} [(n+2)(n+1) a_{n+2} - a_{n-1}] x^n = 0
\]

which leads to the recurrence relations:
\[
2a_2 = 0; \quad (n+2)(n+1) a_{n+2} - a_{n-1} = 0 \implies a_{n+2} = \frac{a_{n-1}}{(n+2)(n+1)}.
\]

We see that \(a_0 \) determines \(a_3, a_6, a_9, \ldots \), \(a_1 \) determines \(a_4, a_7, a_{10}, \ldots \), and \(a_2 \) determines \(a_5, a_8, a_{11}, \ldots \).

More specifically, we have
\[
a_{3k} = \frac{a_{3k-3}}{(3k)(3k-1)} = \frac{a_{3k-6}}{(3k)(3k-1)(3k-3)} = \ldots = \frac{a_0}{(3k)(3k-1) \cdots 5 \cdot 3 \cdot 2};
\]
\[
a_{3k+1} = \frac{a_{1}}{(3k+1)(3k) \cdots 7 \cdot 6 \cdot 4 \cdot 3};
\]

\[
a_{3k+2} = \frac{a_{3k}}{(3k+2)(3k+1)(3k-1) \cdots 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3}.
\]
and
\[a_{3k+2} = \frac{a_2}{(3k+2)(3k+1)\ldots8\cdot7\cdot5\cdot4} = 0. \]
(62)

So the solution is
\[y = a_0 \sum_{k=0}^{\infty} \frac{x^{3k}}{(3k)(3k-1)\ldots6\cdot3\cdot2} + a_1 \sum_{k=0}^{\infty} \frac{x^{3k+1}}{(3k+1)(3k)\ldots7\cdot6\cdot4\cdot3}. \]
(63)

Problem 9. (8.3 24) Find a power series expansion about \(x = 0 \) for a general solution to the given differential equation. Your answer should include a general formula for the coefficients.

\[(x^2 + 1) y'' - x y' + y = 0 \]
(64)

Solution. As we need “general formula for the coefficients”, we write
\[y = \sum_{n=0}^{\infty} a_n x^n \]
(65)

and substitute into the equation. We calculate
\[(x^2 + 1) y'' - x y' + y = x^2 \left(\sum_{n=0}^{\infty} a_n x^n \right)'' + \left(\sum_{n=0}^{\infty} a_n x^n \right)' - x \left(\sum_{n=0}^{\infty} a_n x^n \right) + \sum_{n=0}^{\infty} a_n x^n \]
\[= x^2 \sum_{n=2}^{\infty} a_n n (n-1) x^{n-2} + \sum_{n=2}^{\infty} a_n n (n-1) x^{n-2} - x \sum_{n=1}^{\infty} a_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^n \]
\[= \sum_{n=2}^{\infty} a_n n (n-1) x^n + \sum_{n=0}^{\infty} a_{n+2} (n+2) (n+1) x^n - \sum_{n=1}^{\infty} a_n x^n + \sum_{n=0}^{\infty} a_n x^n \]
\[= \sum_{n=2}^{\infty} a_n n (n-1) x^n + 2 a_2 + 6 a_3 x + \sum_{n=2}^{\infty} a_{n+2} (n+2) (n+1) x^n - a_1 x - \sum_{n=2}^{\infty} a_n n x^n + a_0 + a_1 x + \sum_{n=0}^{\infty} a_n x^n \]
\[= (2 a_2 + a_0) + (6 a_3) x + \sum_{n=2}^{\infty} [a_n n (n-1) - n a_n + a_n + a_{n+2} (n+2) (n+1)] x^n \]
\[= (2 a_2 + a_0) + (6 a_3) x + \sum_{n=2}^{\infty} [a_{n+2} (n+2) (n+1) + a_n (n-1)^2] x^n. \]
So we have the following:

\[2a_2 + a_0 = 0 \] \hspace{1cm} (66)
\[6a_3 = 0 \] \hspace{1cm} (67)
\[a_{n+2}(n+2)(n+1)+a_n(n-1)^2 = 0 \text{ for all } n \geq 2 \] \hspace{1cm} (68)

which gives

\[a_2 = -\frac{a_0}{2}, \quad a_3 = 0, \quad a_{n+2} = -\frac{(n-1)^2}{(n+2)(n+1)}a_n \text{ for } n \geq 2. \] \hspace{1cm} (69)

Note that from the 2nd and the 3rd relation we conclude that \(a_n = 0 \) for all odd \(n \geq 3 \). To derive a general formula for even \(n \), denote \(n = 2k \). We first rewrite

\[a_{n+2} = -\frac{(n-1)^2}{(n+2)(n+1)}a_n \] \hspace{1cm} (70)

to

\[a_n = -\frac{(n-3)^2}{n(n-1)}a_{n-2}. \] \hspace{1cm} (71)

From this we obtain

\[a_{2k} = -\frac{(2k-3)^2}{2k(2k-1)}a_{2(k-1)} \]
\[= (-1)^2 \frac{(2k-3)^2(2k-1)^2}{(2k)(2k-1)(2k-1)(2k-1)}a_{2(k-2)} \]
\[= (-1)^2 \frac{(2k-3)(2k-5)^2}{(2k)(2k-3)}a_{2(k-2)} \]
\[= (-1)^3 \frac{(2k-3)(2k-5)^2}{(2k)(2k-3)(2k-5)}a_{2(k-3)} \]
\[\vdots \]
\[= (-1)^{k-1} \frac{(2k-3)(2k-5)\cdots 1}{(2k)\cdots (3)}a_2 \]
\[= (-1)^k \frac{(2k-3)(2k-5)\cdots 1(-1)^2}{(2k)!}a_0. \] \hspace{1cm} (72)

Summarizing, we have

\[y = a_1 x + a_0 \left[1 + \sum_{k=1}^{\infty} (-1)^k \frac{(2k-3)(2k-5)\cdots 1(-1)^2}{(2k)!} x^{2k} \right]. \] \hspace{1cm} (73)

Note that since \(a_0, a_1 \) are free, the two linearly independent solutions to the equation can be chosen as

\[y_1 = x, \quad y_2 = 1 + \sum_{k=1}^{\infty} (-1)^k \frac{(2k-3)(2k-5)\cdots 1(-1)^2}{(2k)!} x^{2k}. \] \hspace{1cm} (74)

Although it’s not possible to check whether \(y_2 \) is really a solution or not (besides essentially repeating the above calculation), it is easy to see that \(y_1 = x \) indeed solves the equation. This improves the likelihood that our calculation is correct.

Problem 10. (8.3 26) Find at least first four nonzero terms in a power series expansion about \(x = 0 \) for the solution to the given initial value problem.

\[(x^2 - x + 1) y'' - y' - y = 0; \quad y(0) = 0, y'(0) = 1. \] \hspace{1cm} (75)

Solution. Write

\[y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots \] \hspace{1cm} (76)

Using the initial condition we get

\[a_0 = 0, a_1 = 1. \] \hspace{1cm} (77)
Simplify and collect terms of same power together:

\[y = x + a_2 x^2 + a_3 x^3 + \ldots \] \hspace{1cm} (78)

We see that even if \(a_2, a_3 \neq 0 \) we still do not have four nonzero terms. So we need to expand at least one more term:

\[y = x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \ldots \] \hspace{1cm} (79)

Substitute into the equation we obtain

\[(x^2 - x + 1) \left(2 a_2 + 6 a_3 x + 12 a_4 x^2 + \ldots \right) - (1 + 2 a_2 x + 3 a_3 x^2 + 4 a_4 x^3 + \ldots) - (x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \ldots) = 0. \] \hspace{1cm} (80)

Simplify the left hand side:

\[(2 a_2 - 1) + (6 a_3 - 4 a_2 - 1) x + (a_2 - 9 a_3 + 12 a_4) x^2 + \cdots = 0 \] \hspace{1cm} (81)

Therefore

\[2 a_2 - 1 = 0, \quad 6 a_3 - 4 a_2 - 1 = 0, \quad a_2 - 9 a_3 + 12 a_4 = 0, \] \hspace{1cm} (82)

which gives

\[a_2 = \frac{1}{2}, \quad a_3 = \frac{1}{2}, \quad a_4 = \frac{1}{3}. \] \hspace{1cm} (83)

So we have the first four terms:

\[y = x + \frac{1}{2} x^2 + \frac{1}{2} x^3 + \frac{1}{3} x^4 + \ldots \] \hspace{1cm} (84)

Problem 11. (8.4 12) Find at least the first four nonzero terms in a power series expansion about \(x_0 \) for a general solution to the given differential equation with the given value for \(x_0 \).

\[y'' + (3 x - 1) y' - y = 0; \quad x_0 = -1. \] \hspace{1cm} (85)

Solution. As \(x_0 = -1 \neq 0 \), we need to do a change of variable \(t = x - x_0 = x + 1 \) first. Under this change of variable the equation becomes

\[y'' + (3 (t - 1) - 1) y' - y = 0, \quad t_0 = 0 \] \hspace{1cm} (86)

which simplifies to

\[y'' + (3 t - 4) y' - y = 0. \] \hspace{1cm} (87)

Write \(y \) up to first four terms:

\[y = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + \ldots \] \hspace{1cm} (88)

and substitute into the equation:

\[[2 a_2 + 6 a_3 t + \ldots] + (3 t - 4) [a_1 + 2 a_2 t + 3 a_3 t^2 + \ldots] - [a_0 + a_1 t + a_2 t^2 + a_3 t^3 + \ldots] = 0. \] \hspace{1cm} (89)

Simplify and collect terms of same power together:

\[(2 a_2 - 4 a_1 - a_0) + (6 a_3 + 2 a_1 - 8 a_2) t + \cdots = 0 \] \hspace{1cm} (90)

This gives

\[2 a_2 - 4 a_1 - a_0 = 0; \quad 6 a_3 + 2 a_1 - 8 a_2 = 0 \] \hspace{1cm} (91)

so

\[a_2 = 2 a_1 + \frac{a_0}{2}; \quad a_3 = \frac{7}{3} a_1 + \frac{2}{3} a_0. \] \hspace{1cm} (92)

We already have \(y \) up to four nonzero terms:

\[y = a_0 + a_1 t + \left(2 a_1 + \frac{a_0}{2} \right) t^2 + \left(\frac{7}{3} a_1 + \frac{2}{3} a_0 \right) t^3 + \ldots \] \hspace{1cm} (93)

Finally, back to \(x \):

\[y = a_0 + a_1 (x + 1) + \left(2 a_1 + \frac{a_0}{2} \right) (x + 1)^2 + \left(\frac{7}{3} a_1 + \frac{2}{3} a_0 \right) (x + 1)^3 + \ldots \] \hspace{1cm} (94)
Problem 12. (8.4 18) Find at least the first four nonzero terms in a power series expansion of the solution to the given initial value problem.

\[y'' - (\cos x) y' - y = 0, \quad y(\pi/2) = 1, \quad y'(\pi/2) = 0. \]

Solution. As \(x_0 = \frac{\pi}{2} \neq 0 \), we need to change variable: \(t = x - \frac{\pi}{2} \). So that the initial conditions for \(y(t) \) becomes

\[y(0) = 1, \quad y'(0) = 0. \]

Under this change of variable, \(\cos x = \cos \left(t + \frac{\pi}{2} \right) = -\sin t \). So the equation in \(t \) is

\[y'' + (\sin t) y' - y = 0, \quad y(0) = 1, \quad y'(0) = 0. \]

Writing

\[y = a_0 + a_1 t + \ldots \]

the initial conditions give

\[a_0 = 1, \quad a_1 = 0. \]

So to obtain first four nonzero terms we have to at least write

\[y = 1 + a_2 t^2 + a_3 t^3 + a_4 t^4 + \ldots \]

and substitute into the equation.

We get

\[[2 a_2 + 6 a_3 t + 12 a_4 t^2 + \ldots] + (t - \frac{t^3}{6} + \ldots)[2 a_2 t + 3 a_3 t^2 + 4 a_4 t^3 + \ldots] \]

\[-[1 + a_2 t^2 + a_3 t^3 + a_4 t^4 + \ldots] = 0. \]

Expanding and balancing, we get

\[(2 a_2 - 1) + 6 a_3 t + (12 a_4 + a_2) t^2 + \ldots = 0 \]

which gives

\[a_2 = \frac{1}{2}, \quad a_3 = 0, \quad a_4 = -\frac{1}{24}. \]

So we obtain

\[y = 1 + \frac{1}{2} t^2 - \frac{1}{24} t^4 + \ldots \]

and do not have enough nonzero terms.

So we have to expand \(y \) up to at least one more term:

\[y = 1 + \frac{1}{2} t^2 - \frac{1}{24} t^4 + a_5 t^5 + \ldots \]

and substitute into the equation:

\[\left[1 - \frac{1}{2} t^2 + 20 a_5 t^3 + \ldots \right] + \left(t - \frac{t^3}{6} + \ldots \right) \left[t - \frac{t^3}{6} + 5 a_5 t^4 + \ldots \right] \]

\[-\left[1 + \frac{1}{2} t^2 - \frac{1}{24} t^4 + a_5 t^5 + \ldots \right] = 0. \]

\(a_5 \) is then determined by balancing the \(t^3 \) terms:

\[20 a_5 = 0 \Rightarrow a_5 = 0. \]

This means we need to expand even one more term:

\[y = 1 + \frac{1}{2} t^2 - \frac{1}{24} t^4 + a_6 t^6 + \ldots \]

Substituting into the equation we get

\[\left[1 - \frac{1}{2} t^2 + 30 a_6 t^4 + \ldots \right] + \left(t - \frac{t^3}{6} + \ldots \right) \left[t - \frac{t^3}{6} + 6 a_6 t^5 + \ldots \right] \]

\[-\left[1 + \frac{1}{2} t^2 - \frac{1}{24} t^4 + a_6 t^6 + \ldots \right] = 0 \]
Balancing \(t^4 \) we get

\[
30 a_6 - \frac{1}{3} + \frac{1}{24} = 0 \implies a_6 = \frac{7}{720}.
\] (109)

So finally we have obtained \(y \) up to four nonzero terms:

\[
y = 1 + \frac{1}{2} t^2 - \frac{1}{24} t^4 + \frac{7}{720} t^6 + \ldots
\] (110)

Back to \(x \):

\[
y = 1 + \frac{1}{2} \left(x + \frac{\pi}{2} \right)^2 - \frac{1}{24} \left(x + \frac{\pi}{2} \right)^4 + \frac{7}{720} \left(x + \frac{\pi}{2} \right)^6 + \ldots
\] (111)

Remark 1. (For those who are curious) In fact one can show that for this problem, all \(a_n \) with \(n \) odd must be 0. Assume the contrary. Let \(a_n t^n \) be the lowest order term with odd power. As \(y'(0) = 0 \), \(n \geq 3 \), \(a_n \) must be determined by balancing the \(t^{n-2} \) term in

\[
y'' + (\sin t) y' - y = 0 \implies y'' + \left(t - \frac{t^3}{6} + \ldots \right) y' - y = 0.
\] (112)

Now there is no \(t^{n-2} \) term in \(y \) (since \(a_n t^n \) is the lowest order term with odd power). In the product, since the expansion of \(\sin t \) involves only odd powers of order at least 1, any \(t^{n-2} \) term must involve an even power of at most \(n - 3 \) in \(y' \). But such term can only come from differenting an odd power term of at most \(n - 2 \) in \(y \). Such term doesn’t exist (again, because \(a_n t^n \) is the lowest odd power term in \(y \)). So balancing \(t^{n-2} \) terms in the equation gives \(a_n n (n - 1) t^{n-2} = 0 \) and consequently \(a_n = 0 \). Contradiction.

Note that the above argument breaks down when \(a_1 \neq 0 \).

Problem 13. (8.4 27) Find at least first four nonzero terms of the power series expansion about \(x = 0 \) of a general solution to the given differential equation

\[
(1 - x^2) y'' - y' + y = \tan x.
\] (113)

Solution. We write \(y \) up to four terms

\[
y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots
\] (114)

and substitute into the equation. However we have to first expand \(\tan x \) to at least 4 terms at \(x = 0 \). We have

\[
\tan 0 = 0
\] (115)

\[
(tan x)' = \frac{1}{\cos^2 x} \implies (\tan x)'(0) = 1;
\] (116)

\[
(tan x)'' = 2 (\cos x)^{-3} \sin x \implies (\tan x)''(0) = 0;
\] (117)

\[
(tan x)''' = 6 (\cos x)^{-4} \sin^2 x + 2 (\cos x)^{-2} \implies (\tan x)'''(0) = 2.
\] (118)

So up to first four terms, we have

\[
\tan x = x + \frac{x^3}{3} + \ldots
\] (119)

Now substituting \(y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots \) into the equation we have

\[
(1 - x^2) \left(2 a_2 + 6 a_3 x + \cdots \right) - (a_1 + 2 a_2 x + 3 a_3 x^2 + \cdots) + (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots) = x + \frac{x^3}{3} + \ldots
\] (120)

Noticing that balancing the constant term would give us \(a_2 \) and balancing the \(x \) term would give us \(a_3 \), we only need to expand each term up to \(x \). So the equation becomes

\[
2 a_2 + 6 a_3 x + \cdots - (a_1 + 2 a_2 x + \cdots) + (a_0 + a_1 x + \cdots) = x + \cdots
\] (121)

which gives

\[
2 a_2 - a_1 + a_0 = 0; \quad 6 a_3 - 2 a_2 + a_1 = 1
\] (122)
Therefore
\[a_2 = \frac{a_1 - a_0}{2}, \quad a_3 = \frac{1 - a_0}{6}. \] (123)

Both are nonzero.

The solution up to first four terms is then
\[y = a_0 + a_1 x + \frac{a_1 - a_0}{2} x^2 + \frac{1 - a_0}{6} x^3 + \cdots \] (124)

Or written in the form \(C_1 y_1 + C_2 y_2 + y_p \):
\[y = a_0 \left[1 - \frac{x^2}{2} + \frac{x^3}{6} + \cdots \right] + a_1 \left[x + \frac{x^2}{2} + \cdots \right] + \left[\frac{x^3}{6} + \cdots \right] \] (125)

Problem 14. (8.4 28) Find at least first four nonzero terms of the power series expansion about \(x = 0 \) of a general solution to the given differential equation.

\[y'' - (\sin x) y = \cos x. \] (126)

Solution. Since we need first four terms we need to at least expand \(y \) up to four terms:
\[y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots \] (127)

and substitute into the equation: \[2 a_2 + 6 a_3 x + \cdots = 1 \left[1 - \frac{x^2}{2} + \cdots \right] \]

Expanding the left hand side we obtain
\[2 a_2 + (6 a_3 - a_0) x + \cdots = 1 - \frac{x^2}{2} + \cdots \] (130)

This gives
\[2 a_2 = 1 \] (131)
\[6 a_3 - a_0 = 0 \] (132)

and we have \(y \) up to first four nonzero terms:
\[y = a_0 + a_1 x + \frac{x^2}{2} + \frac{a_0}{6} x^3 + \cdots \] (133)

Note that to obtain \(a_2 \) and \(a_3 \) we only need to balance the constant term and the \(x \) term. So in fact we only need to expand everything in \(- (\sin x) y \) and \(\cos x \) up to \(x \), that is expand the equation to just
\[2 a_2 + 6 a_3 x + \cdots = 1 - \cdots. \] (128)

See that this leads to the same equations for \(a_2 \) and \(a_3 \).