(1) Prove the following Minimum Principle. If \(f \) is a non-constant analytic function on a bounded open set \(G \) and is continuous on the closure of \(G \), then either \(f \) has a zero in \(G \) or \(|f| \) assumes its minimum value on \(\partial G \).

(2) Let \(0 < r < R \) and put \(A = \{ z : r \leq |z| \leq R \} \). Show that there is a positive number \(\varepsilon > 0 \) such that for each polynomial \(p(z) \in \mathbb{C}[z] \),

\[
\sup\{|p(z) - z^{-1}| : z \in A\} \geq \varepsilon
\]

That is, \(z^{-1} \) is not the uniform limit of polynomials on \(A \).

(3) Let \(f \) be analytic in the disk \(\Delta = \{ |z| < 1 \} \). We define \(A(r) = \max\{|\text{Re}f(z)| : |z| = r\} \) for \(0 \leq r < 1 \). Show that unless \(f \) is a constant, \(A(r) \) is a strictly increasing function of \(r \).

(4) Let \(f \) be analytic on \(R_1 < |z| < R_2 \) which is not identically zero; define

\[
I_2(r) = \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta
\]

Show that \(\log I_2(r) \) is a convex function of \(\log r \) for \(R_1 < r < R_2 \), i.e.,

\[
I_2(e^x)I_2(e^y) \geq \left(I_2(e^{(x+y)/2})\right)^2
\]

for all \(\log R_1 < x, y < \log R_2 \).

(5) A map \(f : X \to Y \) is proper if for every compact set \(D \subset Y \), \(f^{-1}(D) \) is compact. Show that if \(f : \mathbb{C} \to \mathbb{C} \) is proper and holomorphic, then \(f(z) \) must be a polynomial.

(6) Show that \(D_1 = \{ 0 < |z| < 1 \} \) and \(D_2 = \{ 1 < |z| < 2 \} \) are not biholomorphic, i.e., there does not exist a holomorphic map \(f : D_1 \to D_2 \) which is 1-1 and onto.

(7) Find a biholomorphic map \(f : \Delta = \{ |z| < 1 \} \to G = \{ |z| < 1, \text{Re}z > 0, \text{Im}z > 0 \} \).

(8) Find a holomorphic covering map \(f : \Delta = \{ |z| < 1 \} \to G = \{ r < |z| < R \} \) for some \(0 < r < R \).