Math 506 Midterm

(1) Compute the integral:
\[\int_0^\infty \frac{\log x}{(1+x^2)^2} \, dx \]

(2) A map \(f : X \to Y \) is finite if \(f^{-1}(p) \) is finite for every point \(p \in Y \).
Show that if \(f : \mathbb{C} \to \mathbb{C} \) is finite and holomorphic, then \(f(z) \) must be a polynomial.

(3) A map \(f : X \to Y \) is proper if for every compact set \(D \subset Y \), \(f^{-1}(D) \) is compact.
Show that if \(f : \mathbb{C} \to \mathbb{C} \) is proper and holomorphic, then \(f(z) \) must be a polynomial.

(4) Show that \(D_1 = \{ 0 < |z| < 1 \} \) and \(D_2 = \{ 1 < |z| < 2 \} \) are not biholomorphic.

(5) A map \(f : D_1 \to D_2 \) is ramified at point \(p \in D_1 \) of index \(m > 0 \) if for every \(\epsilon > 0 \), there exists \(\delta > 0 \) such that for every \(y \in \{ 0 < |z-f(p)| < \delta \} \), there are exactly \(m + 1 \) distinct points \(x_1, x_2, \ldots, x_{m+1} \) in \(\{ 0 < |z-p| < \epsilon \} \) such that \(f(x_i) = y \) for \(i = 1, 2, \ldots, m+1 \). We call \(m \) the ramification index of \(f \) at \(p \). Show that if \(f \) is analytic at \(p \), then \(f \) is ramified at point \(p \) of index \(m \) if and only if \(f'(p) = f''(p) = \ldots = f^{(m)}(p) = 0 \) and \(f^{(m+1)}(p) \neq 0 \).

(6) Let \(f : D_1 \to D_2 \) be holomorphic, finite and onto where \(D_1 \) is a domain in \(\mathbb{C} \) (i.e. an open connected set). For every point \(q \in D_2 \), we let \(N(q) \) be the number of points in \(f^{-1}(q) \). Show that \(N(q) \) is a lower semicontinuous function on \(D_2 \), i.e., \(\{ q \in D_2 : N(q) > c \} \) is open for any \(c \in \mathbb{R} \).

(7) If \(f : D \to \mathbb{C} \) is analytic except for poles, show that the poles of \(f(z) \) cannot have a limit point in \(D \).

(8) Let \(f : D_1 \to D_2 \) be holomorphic and onto where both \(D_1 \) and \(D_2 \) are simply connected domains in \(\mathbb{C} \). Show that if \(f'(z) \) does not vanish, \(f \) is 1-1.