A9.1 Find the residues of

(a) \(\frac{z}{z^4 + 1} \) at \(\exp(\pi i/4) \);

(b) \(\exp\left(z - \frac{1}{z}\right) \) at 0;

(c) \(\frac{z^2}{(z^2 - 1)^2} \) at 1;

(d) \((\tan z)^3 \) at \(3\pi/2 \).

Solution. (a) Since \((z^4 + 1)' \neq 0 \) at \(z = \exp(\pi i/4) \), \(z(z^4 + 1)^{-1} \) has a simple pole at \(z = \exp(\pi i/4) \) with residue

\[
\text{Res}\left(\frac{z}{z^4 + 1}, \exp(\pi i/4)\right) = \left. \frac{z}{(z^4 + 1)'} \right|_{\exp(\pi i/4)} = -\frac{i}{4}
\]

(b) In \(0 < |z| < \infty \),

\[
\exp\left(z - \frac{1}{z}\right) = \exp(z) \exp\left(-\frac{1}{z}\right) = \left(\sum_{l=0}^{\infty} \frac{z^l}{l!}\right) \left(\sum_{m=0}^{\infty} \frac{(-1)^m}{m!}z^{-m}\right) = \sum_{l,m \geq 0} \frac{(-1)^m}{l!m!} z^{l-m} = \sum_{n=-\infty}^{\infty} \left(\sum_{m=-n}^{\infty} \frac{(-1)^m}{(m+n)!m!}\right) z^n.
\]

Therefore,

\[
\text{Res}\left(\exp\left(z - \frac{1}{z}\right), 0\right) = \sum_{m=1}^{\infty} \frac{(-1)^m}{(m-1)!m!} = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{1!} - \frac{1}{2!} + \ldots
\]

(c) Since \((z^2 - 1)^2 \) has a zero at 1 with multiplicity 2, \(z^2(z^2 - 1)^{-2} \) has a pole at 1 of order 2 and hence

\[
\text{Res}\left(\frac{z^2}{(z^2 - 1)^2}, 1\right) = \text{Res}\left(\frac{1}{(z - 1)^2 (z + 1)^2}, 1\right) = \left. \frac{z^2}{(z + 1)^2} \right|_{1} = \frac{1}{4}.
\]

\(^1\text{http://www.math.ualberta.ca/~xichen/math41117f/hw9s.pdf}\)
(d) Let \(z = w + 3\pi/2 \). In \(0 < |w| < \pi \),

\[
(tan z)^3 = -(cot w)^3 = -(cos w)^3(sin w)^{-3}
\]

\[
= -w^{-3} \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} w^{2n} \right)^3 \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} w^{2n} \right)^{-3}
\]

Therefore, the residue of \((tan z)^3\) at \(3\pi/2\) is the coefficient of \(w^2\) in the expansion of the power series

\[
- \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} w^{2n} \right)^3 \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} w^{2n} \right)^{-3}
\]

\[
= - \left(1 - \frac{w^2}{2} \right)^3 \left(1 - \frac{w^2}{6} \right)^{-3} + O(w^4)
\]

\[
= - \left(1 - \frac{3}{2}w^2 \right) \left(1 + \frac{w^2}{2} \right) + O(w^4) = -1 + w^2 + O(w^4)
\]

where we use the notation \(O(w^m)\) to denote a power series in the form of

\[
O(w^m) = \sum_{n=m}^{\infty} a_n w^n.
\]

Therefore,

\[
Res \left((tan z)^3, \frac{3\pi}{2} \right) = 1.
\]

A9.2 Compute the following integrals:

(a) \(\int_{-\pi}^{\pi} \frac{d\theta}{2 + \cos \theta + \sin \theta} \);

(b) \(\int_{0}^{\infty} \frac{\cos x}{x^4 + x^2 + 1} dx \).

Solution. (a) Let \(z = e^{i\theta} \). Then

\[
dz = ie^{i\theta} d\theta = iz d\theta, \quad \cos \theta = \frac{1}{2}(z + z^{-1}) \text{ and } \sin \theta = \frac{i}{2}(z^{-1} - z).
\]

Therefore,

\[
\frac{d\theta}{2 + \cos \theta + \sin \theta} = -\frac{iz^{-1}dz}{2 + \frac{1}{2}(z + z^{-1}) + \frac{i}{2}(z^{-1} - z)}
\]

\[
= \frac{1 - i}{z^2 + 2(1 + i)z + i} dz
\]
and
\[\int_{-\pi}^{\pi} \frac{d\theta}{2 + \cos \theta + \sin \theta} = \int_{|z|=1} \frac{1 - i}{z^2 + 2(1 + i)z + i} \, dz \]

Note that \(z^2 + 2(1 + i)z + i \) has two roots
\[\alpha_1 = \left(-1 + \frac{\sqrt{2}}{2}\right)(1 + i) \quad \text{and} \quad \alpha_2 = \left(-1 - \frac{\sqrt{2}}{2}\right)(1 + i) \]

with \(|\alpha_1| < 1\) and \(|\alpha_2| > 1\). Therefore,
\[\int_{-\pi}^{\pi} \frac{d\theta}{2 + \cos \theta + \sin \theta} = \int_{|z|=1} \frac{1 - i}{z^2 + 2(1 + i)z + i} \, dz = 2\pi i \text{Res}_{\alpha_1}(z^2 + 2(1 + i)z + i) = 2\pi i \frac{1 - i}{\alpha_1 - \alpha_2} = \sqrt{2}\pi \]

(b) Since \(\cos x = \Re(e^{ix}) \),
\[\int_{0}^{\infty} \frac{\cos x}{x^4 + x^2 + 1} \, dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos x}{x^4 + x^2 + 1} \, dx \]
is the real part of
\[\frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{iz}}{z^4 + z^2 + 1} \, dz \]

For \(R > 0 \), let us consider the integral
\[\int_{-R}^{R} \frac{e^{iz}}{z^4 + z^2 + 1} \, dz + \int_{C_R} \frac{e^{iz}}{z^4 + z^2 + 1} \, dz \]
where \(C_R \) is the semi-circle \(\{|z| = R, \text{Im}(z) \geq 0\} \).

For \(y = \text{Im}(z) \geq 0, |e^{iz}| = e^{-y} \leq 1 \). Therefore,
\[\left| \int_{C_R} \frac{e^{iz}}{z^4 + z^2 + 1} \, dz \right| \leq \frac{\pi R}{R^4 - R^2 - 1} \]
and hence
\[\int_{C_R} \frac{e^{iz}}{z^4 + z^2 + 1} \, dz = 0. \]

Note that
\[z^4 + z^2 + 1 = (z^2 + 1)^2 - z^2 = (z^2 + z + 1)(z^2 - z + 1) = (z - e^{2\pi i/3})(z + e^{2\pi i/3})(z - e^{\pi i/3})(z + e^{\pi i/3}) \]
where \(\text{Im}(e^{2\pi i/3}) > 0 \) and \(\text{Im}(e^{\pi i/3}) > 0 \). Hence
\[
\int_{-R}^{R} \frac{e^{iz}}{z^4 + z^2 + 1} \, dz + \int_{C_R} \frac{e^{iz}}{z^4 + z^2 + 1} \, dz \\
= 2\pi i \text{Res} \left(\frac{e^{iz}}{z^4 + z^2 + 1}, e^{2\pi i/3} \right) + 2\pi i \text{Res} \left(\frac{e^{iz}}{z^4 + z^2 + 1}, e^{\pi i/3} \right) \\
= 2\pi i \left(\frac{e^{iz}}{(z^4 + z^2 + 1)'} \right) \bigg|_{z = e^{2\pi i/3}} + 2\pi i \left(\frac{e^{iz}}{(z^4 + z^2 + 1)'} \right) \bigg|_{z = e^{\pi i/3}} \\
= \frac{\pi}{3} e^{-\sqrt{3}/2} \left(\sqrt{3} \cos \left(\frac{1}{2} \right) + 3 \sin \left(\frac{1}{2} \right) \right).
\]

Taking the limit as \(R \to \infty \), we obtain
\[
\int_{0}^{\infty} \frac{\cos x}{x^4 + x^2 + 1} \, dx = \lim_{R \to \infty} \int_{-R}^{R} \frac{e^{iz}}{z^4 + z^2 + 1} \, dz \\
= \frac{\pi}{6} e^{-\sqrt{3}/2} \left(\sqrt{3} \cos \left(\frac{1}{2} \right) + 3 \sin \left(\frac{1}{2} \right) \right).
\]

□

A9.3 Let \(f(z) \) be a nonconstant analytic function on \(\mathbb{C} \setminus S \), where \(S \) is a finite subset of \(\mathbb{C} \). Show that \(f(\mathbb{C} \setminus S) = \mathbb{C} \).

Proof. If \(f(z) \) has an essential singularity at some \(p \in S \), then by Casorati-Weierstrass Theorem,
\[
\overline{f(\mathbb{C} \setminus S)} \supset \overline{f(\{0 < |z - p| < r\})} = \mathbb{C}
\]
for all \(r > 0 \) such that \(\{0 < |z - p| < r\} \cap S = \emptyset \).

If \(f(z) \) has an essential singularity at \(\infty \), then by Casorati-Weierstrass Theorem again,
\[
\overline{f(\mathbb{C} \setminus S)} \supset \overline{f(\{|z| > R\})} = \mathbb{C}
\]
for all \(R > 0 \) such that \(S \subset \{|z| < R\} \).

Suppose that \(f(z) \) has at worst poles at \(S \) and \(\infty \). Let \(S = \{z_1, z_2, \ldots, z_n\} \) and \(m_j \) be the order of the pole of \(f(z) \) at \(z_j \) for \(j = 1, 2, \ldots, m \). We let
\[
g(z) = (z - z_1)^{m_1}(z - z_2)^{m_2} \ldots (z - z_n)^{m_n} \text{ and } h(z) = f(z)g(z).
\]

Then \(h(z) \) has removable singularities at \(S \) and is hence entire. Since \(f(z) \) and \(g(z) \) have at worst poles at \(\infty \), the same holds for \(h(z) = f(z)g(z) \). In conclusion, \(h(z) \) is an entire function with at worst a pole at \(\infty \). Therefore, \(h(z) \) is a polynomial and \(f(z) = h(z)/g(z) \) is a rational function in \(z \).
Let

\[M = \lim_{z \to \infty} \frac{h(z)}{g(z)} \]

where we set \(M = \infty \) if \(\deg h(z) > \deg g(z) \). For all \(c \neq M \), \(h(z) - cg(z) \) is a nonzero polynomial. And since \(f(z) \) is not constant, \(h(z) - cg(z) \) is a polynomial of degree at least one. By Fundamental Theorem of Algebra, there exists \(z_0 \) such that \(h(z_0) - cg(z_0) = 0 \) and hence \(c \in f(\mathbb{C} \setminus S) \). Consequently,

\[\overline{f(\mathbb{C} \setminus S)} \supset \mathbb{C} \setminus \{M\} = \mathbb{C}. \]

□

A9.4 Let \(f : \mathbb{C}^* \to \mathbb{C}^* \) be a biholomorphic map. Do the following:

(a) Show that \(f(z) \) has removable singularities or poles at both 0 and \(\infty \).

(b) Show that \(f(z) \equiv cz \) or \(cz^{-1} \) for some constant \(c \neq 0 \).

Proof. Let \(D = \{|z - 2| < 1\} \). By Open Mapping Theorem, \(f(D) \) contains a disk at \(f(2) \), i.e.,

\[\{|w - f(2)| < r\} \subset f(D) \]

for some \(r > 0 \). Since \(f \) is one-to-one,

\[f(D) \cap f(\mathbb{C} \setminus D) = \emptyset \]

and hence

\[\{|w - f(2)| < r\} \cap f(\mathbb{C} \setminus D) = \emptyset. \]

Therefore,

\[f(2) \notin \overline{f(\mathbb{C} \setminus D)}. \]

If \(f(z) \) has an essential singularity at 0, then by Casorati-Weierstrass,

\[\overline{f(\mathbb{C} \setminus D)} \supset f(\{0 < |z| < 1\}) = \mathbb{C} \]

which is a contraction.

If \(f(z) \) has an essential singularity at \(\infty \), then by Casorati-Weierstrass,

\[\overline{f(\mathbb{C} \setminus D)} \supset f(\{|z| > 3\}) = \mathbb{C} \]

which is again a contraction.

Consequently, \(f(z) \) has at worst poles at 0 and \(\infty \). Suppose that

\[f(z) = \sum_{n \geq 0} a_n z^n + \sum_{n < 0} a_n z^n \]
is the Laurent series of \(f(z) \) in \(0 < |z| < \infty \). Since \(f(z) \) has at worst a pole at 0, all but finitely many \(a_n \) vanish for \(n < 0 \). Since \(f(z) \) has at worst a pole at \(\infty \), all but finitely many \(a_n \) vanish for \(n > 0 \). Therefore,

\[
f(z) = \sum_{n=-m}^{m} a_n z^n = \frac{g(z)}{z^m}
\]

for some \(m \in \mathbb{N} \) and some polynomial \(g(z) \) such that \(g(z) \) and \(z^m \) are coprime.

We discuss in three separate cases.

Suppose that \(g(z) \) is constant. Since \(f(z) \) is not constant, \(f(z) = cz^{-m} \) for some \(c \neq 0 \) and \(m > 0 \). If \(m > 1 \), then

\[
f(e^{2\pi i/m}) = f(1)
\]

and hence \(f \) is not one-to-one. So \(m = 1 \) and \(f(z) = cz^{-1} \).

Suppose that \(m = 0 \). Then \(f(z) = g(z) \) is a polynomial of degree at least one. Since \(f \) is biholomorphic on \(\mathbb{C}^* \), \(f'(z) \neq 0 \) for all \(z \neq 0 \). So \(f'(z) = 0 \) only if \(z = 0 \). Hence \(f'(z) = az^{n-1} \) and \(f(z) = cz^n + b \) for some constants \(c \neq 0 \) and \(b \in \mathbb{C} \). If \(n > 1 \), then

\[
f(e^{2\pi i/n}) = f(1)
\]

and hence \(f \) is not one-to-one. So \(n = 1 \) and \(f(z) = cz + b \). If \(b \neq 0 \), then \(f(-b/c) = 0 \). Therefore, \(b = 0 \) and \(f(z) = cz \).

Suppose that \(m > 0 \) and \(g(z) \) is not constant. Then \(g(0) \neq 0 \) since \(g(z) \) and \(z^m \) are coprime. By Fundamental Theorem of Algebra, \(zg'(z) - mg(z) \) has a root \(z_0 \). Since \(g(0) \neq 0 \), \(z_0 \neq 0 \). So

\[
f'(z_0) = \frac{z_0 g'(z_0) - mg(z_0)}{z_0^{m+1}} = 0
\]

which contradicts the fact that \(f'(z) \neq 0 \) for all \(z \neq 0 \).

In conclusion, \(f(z) = cz \) or \(cz^{-1} \) for some constant \(c \neq 0 \). □

A9.5 Do the following:

(a) Compute

\[
\sum_{n=1}^{\infty} \frac{1}{n^4}
\]

by considering the complex line integral

\[
\int_{\gamma_n} \frac{dz}{z^4 \sin z}
\]
along the boundary γ_n of the rectangle
\[
\left\{ |x|, |y| \leq n\pi + \frac{\pi}{2} \right\}.
\]

(b) (Bonus +20 points) Show that there exists a sequence of positive rational numbers c_m such that
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2m}} = c_m\pi^{2m}
\]
for $m = 1, 2, \ldots$

Proof. For all $m \in \mathbb{Z}^+$, we consider the integral
\[
\int_{\gamma_n} \frac{dz}{z^{2m} \sin z}
\]
When $x = \pm(n\pi + \pi/2)$,
\[
|\sin z|^2 = |\sin x|^2 + \left(\frac{e^y - e^{-y}}{2} \right)^2 \geq \sin^2 \left(n\pi + \frac{\pi}{2} \right) = 1.
\]
When $y = \pm(n\pi + \pi/2)$,
\[
|\sin z|^2 = |\sin x|^2 + \left(\frac{e^y - e^{-y}}{2} \right)^2 \geq \left(\frac{e^{n\pi+\pi/2} - e^{-n\pi-\pi/2}}{2} \right)^2 > 1.
\]
Therefore,
\[
\left| \int_{\gamma_n} \frac{dz}{z^{2m} \sin z} \right| \leq 8 \left(n\pi + \frac{\pi}{2} \right) \left(n\pi + \frac{\pi}{2} \right)^{-2m}
\]
and hence
\[
\lim_{n \to \infty} \int_{\gamma_n} \frac{dz}{z^{2m} \sin z} = 0
\]
for $m \geq 1$. By Cauchy Integral Theorem,
\[
\frac{1}{2\pi i} \int_{\gamma_n} \frac{dz}{z^{2m} \sin z} = \sum_{l=-n}^{n} \text{Res}(z^{-2m}(\sin z)^{-1}, l\pi)
\]
For $l \neq 0$, $z^{-2m}(\sin z)^{-1}$ has a simple pole at $l\pi$ and
\[
\text{Res}(z^{-2m}(\sin z)^{-1}, l\pi) = \frac{1}{z^{2m}(\sin z)^{\prime}} \bigg|_{z=l\pi} = \frac{(-1)^l}{l^{2m}\pi^{2m}}
\]
Therefore,
\[
\frac{1}{2\pi i} \int_{\gamma_n} \frac{dz}{z^{2m} \sin z} = \text{Res}(z^{-2m}(\sin z)^{-1}, 0) + 2 \sum_{l=1}^{n} \frac{(-1)^l}{l^{2m}\pi^{2m}}
\]
Taking limits as $n \to \infty$, we obtain
\[
2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2m}} = \pi^{2m} \text{Res}(z^{-2m}(\sin z)^{-1}, 0)
\]
where
\[
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2m}} = \sum_{n=1}^{\infty} \frac{1}{n^{2m}} - 2 \sum_{n=1}^{\infty} \frac{1}{(2n)^{2m}} = (1 - 2^{1-2m}) \sum_{n=1}^{\infty} \frac{1}{n^{2m}}.
\]
Therefore,
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2m}} = \frac{\pi^{2m}}{2 - 2^{2-2m}} \text{Res}(z^{-2m}(\sin z)^{-1}, 0)
\]
In $0 < |z| < \pi$,
\[
z^{-2m}(\sin z)^{-1} = z^{-2m-1} \left(1 - \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2k + 1)!} z^{2k}\right)^{-1}
\]
\[
= z^{-2m-1} \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2k + 1)!} z^{2k}\right)^n
\]
and hence $\text{Res}(z^{-2m}(\sin z)^{-1}, 0)$ is the coefficient of z^{2m} in the expansion of
\[
\sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2k + 1)!} z^{2k}\right)^n
\]
which is the same as the coefficient of z^{2m} in the rational polynomial
\[
\sum_{n=1}^{m} \left(\sum_{k=1}^{m+n} \frac{(-1)^{k+1}}{(2k + 1)!} z^{2k}\right)^n
\]
Therefore, $\text{Res}(z^{-2m}(\sin z)^{-1}, 0)$ is a rational number and
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2m}} = c_m \pi^{2m}
\]
for some $c_m \in \mathbb{Q}^+$.

When $m = 2$, $\text{Res}(z^{-4}(\sin z)^{-1}, 0)$ is the coefficient of z^4 in the expansion of
\[
\sum_{n=1}^{2} \left(\sum_{k=1}^{3-n} \frac{(-1)^{k+1}}{(2k + 1)!} z^{2k}\right)^n = \left(\frac{z^2}{6} - \frac{z^4}{120}\right) + \left(\frac{z^2}{6}\right)^2
\]
\[
= \frac{z^2}{6} + \frac{7}{360} z^4
\]
Therefore, \(\text{Res}(z^{-4}(\sin z)^{-1}, 0) = \frac{7}{360} \) and

\[
\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{2 - 2^{-2}} \text{ Res}(z^{-4}(\sin z)^{-1}, 0) = \frac{\pi^4}{90}
\]