Solution for the Final

1. (a) \(\frac{\partial f}{\partial x} = e^{xy} + xy e^{xy} + ye^x\) and \(\frac{\partial f}{\partial y} = x^2 e^{xy} + e^x\).

 (b) The tangent plane is \(z - 2e = 3e(x - 1) + 2e(y - 1)\).

2. (a) \(y_0 = 1, \ x_0 = 1, \ x_n = x_0 + nh\) and \(y_{n+1} = y_n + (x_n + y_n)h\). So
\(y_1 = 1 + (1 + 1)(2/3) = 7/3, \ y_2 = 7/3 + (5/3 + 7/3)(2/3) = 5, \ y_3 = 5 + (7/3 + 5)(2/3) = 89/9\).

 (b) Solve the equation using the method of integrating factor:
\[e^{-x}y = \int xe^{-x}dx = -\int xd(e^{-x})\]
\[= \int e^{-x}dx - xe^{-x} = -xe^{-x} - e^{-x} + C\]
\[y = -x - 1 + Ce^x.\]

 The initial condition \(y(1) = 1\) gives \(C = 3e^{-1}\). So the solution is \(y = -x - 1 + 3e^{x-1}\).

 (c) The real value of \(y(3)\) is \(-3 - 1 + 3e^2 = 3e^2 - 4\). So the absolute error is \(|3e^2 - 4 - 89/9| = 3e^2 - 125/9\).

3. (a) Solve \(y - 2y^3 = 0 \Rightarrow y(1 - 2y^2) = 0\). So the equilibrium solutions are \(y = 0, \ y = \sqrt{2}/2\) and \(y = -\sqrt{2}/2\).

 (b) When \(y > \sqrt{2}/2, \ y' < 0; \) when \(0 < y < \sqrt{2}/2, \ y' > 0; \) when \(-\sqrt{2}/2 < y < 0, \ y' < 0; \) when \(y < -\sqrt{2}/2, \ y' > 0\). So \(y = \pm\sqrt{2}/2\) are stable and \(y = 0\) is unstable.

 (c) \(\lim_{t \to \infty} y(t) = -\sqrt{2}/2\) from the direction field.

4. (a) Separation of variables:
\[\int \ln y dy = \int \ln x dx \Rightarrow y \ln y - y = x \ln x - x + C\]

 (b) Using method of integrating factor:
\[y' + e^x y = e^{2x} \Rightarrow e^{x} (y' + e^x y) = e^{2x} \Rightarrow e^{x} y = \int e^{2x} e^{x} dx.\]

\[1\text{http://www.math.ucsb.edu/~xichen/math3c02s/fsol.pdf}\]
To work out the integral on the right, we make a substitution $u = e^x$:

$$\int e^{2x} e^x \, dx = \int u \, du = u^2 - u + C.$$

So the general solution is

$$y = e^x - 1 + C e^{-e^x}.$$

Use the initial condition $y(0) = 1$ to find C and we obtain $C = e$. So the solution is

$$y = e^x - 1 + e^{1-e^x}.$$

(c) The integrating factor is

$$I(t) = e^{\int (2+1/t) \, dt} = e^{2t+\ln t} = te^{2t}.$$

So

$$te^{2t} y = \int 2te^{2t} = \int td(e^{2t})$$

$$= te^{2t} - \int e^{2t} \, dt = te^{2t} - \frac{e^{2t}}{2} + C.$$

So the solution is

$$y = 1 - \frac{1}{2t} + \frac{C}{t e^{2t}}.$$

(d) Separation of variables:

$$xy' = xy - y \Rightarrow xy' = (x - 1)y$$

$$\Rightarrow \int \frac{1}{y} \, dy = \int \frac{x - 1}{x} \, dx \Rightarrow \ln |y| = x - \ln |x| + C$$

$$\Rightarrow xy = Ae^x.$$

The initial condition $y(2) = 1$ gives us $A = 2e^{-2}$. So the solution is

$$xy = 2e^{x-2}.$$

5. Since $f'(x) = \sec^2 x$ and $f''(x) = (\sec^2 x)' = 2 \sec x (\sec x \tan x) = 2 \sec^2 x \tan x$, $f'(\pi/4) = 2$ and $f''(\pi/4) = 4$. The second Taylor polynomial is

$$1 + 2 \left(x - \frac{\pi}{4}\right) + 2 \left(x - \frac{\pi}{4}\right)^2$$

2
6. (a) Since
\[\frac{1}{1 + x} = \sum (-1)^n x^n \]
substitute \(x \) by \(x^2 \) and we obtain
\[\frac{1}{1 + x^2} = \sum (-1)^n x^{2n}. \]
So
\[\frac{1 + x}{1 + x^2} = \sum (-1)^n x^{2n} + \sum (-1)^n x^{2n+1}. \]
(b) Note that \(2002 = 2 \cdot 1001 \) and \((-1)^{1001} = -1 \). So the coefficient is \(-1\).

7. (a) Let \(y(t) \) be the balance of your account after \(t \) month, \(r \) be the monthly interest rate and \(m \) be your monthly payment. Then the differential equation modeling this situation is \(dy/dt = ry - m + 100 \). The general solution is \(y = Ae^{rt} + (m - 100)/r \). Since \(y(0) = 2400 \), \(A = 2400 - (m - 100)/r \). So the solution is
\[y = (2400 - (m - 100)/r)e^{rt} + (m - 100)/r \]
In two years (24 months), \(y(24) = 0 \). So
\[(2400 - (m - 100)/r)e^{24r} + (m - 100)/r = 0 \]
Solve it for \(m \) and we have
\[m = 100 + \frac{2400re^{24r}}{e^{24r} - 1} \]
Plug in \(r = 0.01 \) and we have \(m = 212.48 \).
(b) The total interest paid is \(24m - 2400 - 2400 = 299.51 \).

8. Let \(x(t) \) be the amount of salt in the tank at time \(t \). Then
\[\frac{dx}{dt} = -3 \left(\frac{x}{100} \right) \]
with \(x(0) = 20 \). The solution of this IVP is \(x(t) = 20e^{-0.03t} \). We want to find \(t \) such that \(x(t) = 10 \). So we solve the equation \(20e^{-0.03t} = 10 \) and obtain \(t = 100(ln 2)/3 = 23.1 \). So after 23.1 minutes, the tank contains the correct amount of salt.
9. Let \(y(t) \) be the population (in the unit of \(10^9 \) individuals) after \(t \) hours. Then the logistic equation is
\[
\frac{dy}{dt} = ky \left(1 - \frac{y}{M} \right),
\]
where \(M = 5 \), \(y(0) = 1 \) and \(y'(0) = 1 \). Hence
\[
y'(0) = ky(0) \left(1 - \frac{y(0)}{M} \right).
\]
So \(k = 5/4 \).

The solution of the equation is
\[
y(t) = \frac{5}{1 + 4e^{-kt}}.
\]
So after 4 hours,
\[
y(4) = \frac{5}{1 + 4e^{-4k}} = \frac{5}{1 + e^{-5}}.
\]