Sample Midterm I

1. (20 points) Let \(f(x, y) = x + y^2 \).
 (a) (5 points) Draw the level curves of \(f(x, y) \).
 (b) (10 points) Find \(\partial f / \partial x \) and \(\partial f / \partial y \).
 (c) (5 points) Find the tangent plane of the surface \(z = f(x, y) \)
 at the point \((1, 1, 2)\).

2. (40 points) Consider the following differential equation
 \[\frac{dp}{dt} = 1 - e^p. \]
 (a) (10 points) Draw the direction field.
 (b) (10 points) Find the general solution.
 (c) (5 points) Let \(p(0) = p_0 \). Suppose that \(p_0 < 0 \). Find \(\lim_{t \to \infty} p(t) \).
 (d) (5 points) Let \(p(0) = p_0 \). Suppose that \(p_0 > 0 \). Find \(\lim_{t \to \infty} p(t) \).
 (e) (10 points) Find all the equilibrium solutions of the equation
 and determine their stabilities.

3. (20 points) Consider the following differential equation
 \[\frac{dy}{dt} = y - t \]
 with initial condition \(y(1) = 0 \).
 (a) (10 points) Use Euler’s method to approximate \(y(4) \) by taking
 the step \(h = 1 \).
 (b) (5 points) Verify that \(y(t) = Ae^t + t + 1 \) is the general solution
 of the equation, where \(A \) is a constant.
 (c) (5 points) What is the absolute error in the approximation of
 part (a)\

4. (20 points) Solve the following differential equations.
 (a) (10 points)
 \[\frac{dy}{dx} = \frac{\ln x}{\ln y} \]
 (b) (10 points)
 \[xy' + y = xy \]
 with initial condition \(y(2) = 0 \).