Solution for Midterm II

1. (a) Solve the equation using the method of integrating factor:

\[e^{3t}x = \int t e^{3t} dt = \frac{1}{3} \int tde^{3t} = \frac{1}{3} \left(te^{3t} - \int e^{3t} dt \right) \]

\[= \frac{1}{3} \left(te^{3t} + \frac{1}{3} e^{3t} \right) + C = \frac{1}{3} te^{3t} - \frac{1}{9} e^{3t} + C \]

\[\Rightarrow x = \frac{1}{3} t - \frac{1}{9} + Ce^{-3t}. \]

By the initial condition \(x(0) = 0 \), we have \(0 = C - 1/9 \) so \(C = 1/9 \).

The solution is

\[x = \frac{1}{3} t - \frac{1}{9} + \frac{1}{9} e^{-3t} \]

where \(t/3 - 1/9 \) is the steady-state part and \(e^{-3t}/9 \) is the transient part.

(b) Solve the equation using the method of integrating factor after dividing both sides of the equation by \(t^4 \):

\[tx = \int t \left(\frac{1}{t^4} \right) dt = -\frac{1}{2t^2} + C \]

\[\Rightarrow x = -\frac{1}{2t^2} + \frac{C}{t}. \]

2. Let \(m(t) \) be the mass of the sample. Then \(m(t) = m_0e^{kt} \). Since it takes \(n \) days for it to decay from 10g to 9g, \(10e^{nk} = 9 \Rightarrow k = n^{-1} \ln(9/10) \).

To find the time it takes for the sample to decay from 9g to 8g, it suffices to solve \(9e^{kt} = 8 \) for \(t \). So it takes

\[t = \frac{1}{k} \ln \frac{8}{9} = n \left(\frac{\ln(8/9)}{\ln(9/10)} \right) \]

days for it to decay from 9g to 8g.

3. (a) Let \(y(t) \) be the money you owe (in dollars) after \(t \) months, \(r \) be the monthly interest rate and \(m \) be the monthly payments. The differential equation is \(dy/dt = ry - m \). Solve it by separation of variables and

1http://www.math.ucsb.edu/~xichen/math3c01s/mid2webbsol.pdf
we obtain \(y = Ae^{rt} + m/r \). By the initial condition \(y(0) = 15000 \),
\(A = 15000 - m/r \). So the solution is \(y = (15000 - m/r)e^{rt} + m/r \).
After 30 years (360 months), \(y(360) = 0 \). So we have the equation
\((15000 - m/r)e^{360r} + m/r = 0 \). Solve it for \(m \) and we have
\[
m = \frac{15000re^{360r}}{e^{360r} - 1}.
\]
Take \(r = 0.09/12 \) and we have \(m = 120.6 \). So the monthly payments
are 120.6 dollars.

(b) The total interest in 30 years is \(360m - 15000 = 28418 \) dollars.

4. (a) Solve the equation using the method of integrating factor:
\[
e^{2t}x = \int mte^{2t}dt = \frac{m}{2}te^{2t} - \frac{m}{4}e^{2t} + C
\]
\[
\Rightarrow x = \frac{mt}{2} - \frac{m}{4} + Ce^{-2t}.
\]
By the initial condition \(x(0) = 1 \), \(C - m/4 = 1 \) and hence \(C = 1 + m/4 \).
So the solution is
\[
x = \frac{mt}{2} - \frac{m}{4} + (1 + \frac{m}{4})e^{-2t}.
\]

(b) If \(m = 1 \), \(x(t) = t/2 - 1/4 + 5e^{-2t}/4 \). If \(m = 2 \), \(\dot{x}(t) = t - 1/2 + 3e^{-2t}/2 \). So the errors are
\[
E_a = \left| \frac{t}{2} - \frac{1}{4} + \frac{e^{-2t}}{4} \right|
\text{and}
E_r = \left| \frac{2t - 1 + e^{-2t}}{2t - 1 + 5e^{-2t}} \right|.
\]

(c) For \(E_a \), we see that \(t/2 - 1/4 \to \infty \) and \(e^{-2t}/4 \to 0 \) as \(t \to \infty \).
Therefore \(\lim_{t \to \infty} E_a = \infty \).

For \(E_r \), we observe that the dominant term for the enumerator is \(2t \)
while the dominant term for the denominator is \(2t \), as \(t \to \infty \). So
\(\lim_{t \to \infty} E_r = \lim_{t \to \infty} 2t/(2t) = 1 \). However, the rigorous way to put
this is to use L'Hôpital:
\[
\lim_{t \to \infty} E_r = \lim_{t \to \infty} \left| \frac{2t - 1 + e^{-2t}}{2t - 1 + 5e^{-2t}} \right|
= \lim_{t \to \infty} \left| \frac{(2t - 1 + e^{-2t})'}{(2t - 1 + 5e^{-2t})'} \right|
= \lim_{t \to \infty} \left| \frac{2 - 2e^{-2t}}{2 - 10e^{-2t}} \right| = 1.
\]