Sample Midterm I

(1) (30 points) Consider the following differential equation
\[\frac{dp}{dt} = 1 - e^p. \]
(a) (10 points) Find the general solution.
(b) (5 points) Let \(p(0) = p_0 \). Suppose that \(p_0 < 0 \). Find \(\lim_{t \to \infty} p(t) \).
(c) (5 points) Let \(p(0) = p_0 \). Suppose that \(p_0 > 0 \). Find \(\lim_{t \to \infty} p(t) \).
(d) (10 points) Find all the equilibrium solutions of the equation and determine their stabilities.

(2) (20 points) Consider the following differential equation
\[\frac{dy}{dt} = y + t \]
with initial condition \(y(1) = 0 \).
(a) (10 points) Use Euler’s method to approximate \(y(2) \) by taking the step \(h = 1/3 \).
(b) (5 points) Verify that \(y(t) = Ae^t - t - 1 \) is the general solution of the equation, where \(A \) is a constant.
(c) (5 points) What is the absolute error in the approximation of part (a)?

(3) (20 points) Let \(f(x, y) = x^2 - xy + 2y^2 \).
(a) (10 points) Compute \(\partial f / \partial x \) and \(\partial f / \partial y \).
(b) (10 points) Find the tangent plane of \(z = f(x, y) \) at the point \((1, 1, 2) \).

(4) (20 points) Solve the following differential equations.
(a) (10 points)
\[\frac{dy}{dx} = xy. \]
(b) (10 points)
\[\frac{dy}{dx} = y + 1 \]
with initial condition \(y(0) = 0 \).
(5) (10 points) Find all the constant solutions of the differential equation

\[\frac{dy}{dx} = x^2 + y^2. \]

You must justify your answer.
(1) (a)

\[p = \ln \frac{Ae^t}{1 + Ae^t}. \]

(b) 0
(c) 0
(d) \(p = 0 \). Stable.

(2) (a) \(47/27 \).
(c) \(2e^3 - 47/27 \).

(3) (a) \(\frac{\partial f}{\partial x} = 2x - y \) and \(\frac{\partial f}{\partial y} = -x + 4y \).
(b) \(z - 2 = (x - 1) + 3(y - 1) \).

(4) (a) \(y = Ae^{x^2/2} \).
(b) \(y = e^x - 1 \).

(5) No constant solution.