<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (30 points) Consider the following differential equation

\[\frac{dp}{dt} = 2p - p^2. \]

(a) (10 points) Find the general solution.

(b) (5 points) Let \(p(0) = p_0 \). Suppose that \(0 < p_0 < 2 \). Find \(\lim_{t \to \infty} p(t) \).

(c) (5 points) Let \(p(0) = p_0 \). Suppose that \(p_0 > 2 \). Find \(\lim_{t \to \infty} p(t) \).

(d) (10 points) Find all the equilibrium solutions of the equation and determine their stabilities.
2. (20 points) Consider the following differential equation

\[
\frac{dy}{dt} = y + t^2
\]

with initial condition \(y(1) = 1 \).

(a) (10 points) Use Euler’s method to approximate \(y(3) \) by taking the step \(h = 1 \).

(b) (5 points) Verify that \(y(t) = Ae^t - t^2 - 2t - 2 \) is the general solution of the equation, where \(A \) is a constant.

(c) (5 points) What is the absolute error in the approximation of part (a)?
3. (20 points) Let $f(x, y) = \sin x + \cos y$.

(a) (10 points) Compute $\partial f / \partial x$ and $\partial f / \partial y$.

(b) (10 points) Find the tangent plane of $z = f(x, y)$ at the point $(0, \pi/2, 0)$.

4. (20 points) Solve the following differential equations.

(a) (10 points)

\[\frac{dy}{dx} = x(y^2 + 1). \]

(b) (10 points)

\[\frac{dy}{dx} = e^y \]

with initial condition \(y(0) = 0 \).
5. (10 points) Find all the constant solutions of the differential equation

\[\frac{dy}{dx} = x^2 y + y^2. \]

You must justify your answer.