Review for Midterm I

Here are a list of things you need to know:
1. antiderivatives (indefinite integrals); table on p. 402;
2. Riemann sum; approximation of integrals with left and right endpoints and midpoints;
3. fundamental theorem of calculus (including total change theorem);
4. substitution rule.

A Practice Midterm

1. (20 points) A particle is moving along a line so that its velocity is given by
\[v(t) = 4t^3 - 4 \]
where \(t \) is measured in seconds and \(v(t) \) is measured in meters per second. Let \(s(t) \) be the position function of the particle and \(s(0) = 1 \).

(a) (5 points) Find the coordinate of the particle after 3 seconds.
(b) (5 points) Find the coordinate of the particle after 10 seconds.
(c) (10 points) Find the coordinate of the particle after \(t \) seconds.

2. (20 points) The following table gives the value of a function \(f(x) \) obtained from an experiment.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
</tr>
</tbody>
</table>

\[^1\text{http://www.math.ucsb.edu/~xichen/math3b02w/p1.pdf} \]
Estimate $\int_0^6 f(x)\,dx$ using three equal intervals with (a) right endpoints (b) left endpoints (c) midpoints. If $f(x)$ is known to be an increasing function on $[0,6]$, can you say whether your estimates are less than or greater than the exact value of the integral.

3. (20 points)
 (a) (10 points) Let $f(t) = \int_0^t e^{x^2} \,dx$. Find $f'(t)$.
 (b) (10 points) Let $f(t) = \int_0^{t^2} e^{x^2} \,dx$. Find $f'(t)$.

4. (40 points) Evaluate the following integrals.
 (a) (10 points) $\int_1^2 \frac{(1 + x)^3}{x} \,dx$
 (b) (10 points) $\int_1^2 x \sqrt{x^2 + 1} \,dx$
 (c) (10 points) $\int_1^1 \frac{1 + x}{1 + x^2} \,dx$
 (d) (10 points) $\int_0^1 \frac{e^x}{1 + e^x} \,dx$