A Sample Midterm for Midterm II

(1) (15 points) Estimate \(\int_0^{2\pi} \sin(x + \pi/4) \, dx \) using
 (a) (5 points) Midpoint Rule with \(n = 4 \);
 (b) (5 points) Trapezoidal Rule with \(n = 4 \);
 (c) (5 points) Simpson’s Rule with \(n = 4 \).

(2) (15 points) Determine whether the following improper integrals are convergent or divergent. You must justify your answers.
 (a) (5 points) \(\int_0^1 x^{-3/2} \sin x \, dx \)
 (b) (5 points) \(\int_1^\infty \frac{dx}{e^x + x^2} \)
 (c) (5 points) \(\int_1^\infty \frac{dx}{\sqrt{x^4 + 1}} \)

(3) (40 points) Let \(R \) be the region bounded by the curves \(x = e^y \), \(x = 0 \), \(y = 0 \) and \(y = 1 \).
 (a) (10 points) Let \(S_1 \) be the solid obtained by rotating \(R \) around the \(x \)-axis. Find the volume of \(S_1 \).
 (b) (10 points) Let \(S_2 \) be the solid obtained by rotating \(R \) around the \(y \)-axis. Find the volume of \(S_2 \).
 (c) (20 points) A tank full of water has the shape of \(S_2 \) as in part (b) (the top of the tank is on the line \(y = 1 \) and its bottom is on \(y = 0 \); all coordinates are measured in meters). Find the work required to pump the water out of the tank. (Use the fact that the density of water is 1000 kg/m\(^3\) and take \(g = 10 \) m/s\(^2\) to make your computation simple.)

(4) (30 points) Evaluate the following integrals.
 (a) (5 points) \(\int e^t - 1 \, dt \)
 (b) (5 points) \(\int_0^{\pi/4} (\sin 5x)(\sin 2x) \, dx \)
 (c) (5 points) \(\int \frac{dx}{x\sqrt{x^2 + 3}} \)

\(^1\)http://www.math.ucsb.edu/~xichen/math3b00w/p2.pdf
(d) (5 points) \[\int x^3 e^x \, dx \]

(e) (10 points) \[\int \frac{1}{x^4 - 1} \, dx \]

A Reminder for Time & Location of the Final: Mar. 20, 7:30 - 10:30pm, Phelps 1260