(1) (10 points) Solve the equation
\[e^{ax} = ce^{bx} \]
for \(x \), where \(a, b \) and \(c \) are constants, \(c > 0 \) and \(a \neq b \).

(2) (20 points) Let \(f(x) = \ln(\ln x) \). (The domain of \(f(x) \) is whenever \(\ln(\ln x) \) is defined.)
 (a) (5 points) Find the inverse function \(f^{-1}(x) \) of \(f(x) \).
 (b) (10 points) What are the domains and ranges of \(f(x) \) and \(f^{-1}(x) \)?
 (c) (5 points) Where are \(f(x) \) and \(f^{-1}(x) \) continuous?

(3) (15 points) Find the tangent line of the curve \(y^2 = x^3 \) at the point \((1, 1)\). (Do not use the laws of derivative to find the slope. Compute it using its definition.)

(4) (10 points) Let
\[
f(x) = \begin{cases}
 cx - 1 & \text{if } x \geq 1 \\
 1 - cx^2 & \text{if } x < 1
\end{cases}
\]
where \(c \) is a constant. For what values of \(c \) is \(f(x) \) continuous on \((-\infty, \infty)\)?

(5) (15 points) Find all the horizontal asymptotes of the curve
\[
y = \frac{\sqrt{4x^2 + 1}}{x + 1}.
\]

(6) (30 points) Find the following limits if they exist.
 (a) (10 points) \(\lim_{x \to 0} \frac{x^3 - 1}{x^2 - 1} \).
 (b) (10 points) \(\lim_{t \to 9} \frac{9 - t}{3 - \sqrt{t}} \).
 (c) (10 points) \(\lim_{x \to \infty} (\sqrt{x + 1} - \sqrt{x}) \).