PRINT NAME:__

PERM NUMBER:__

DISCUSSION SECTION AND TA’S NAME:___________________________

(1) No books and notes are allowed.
(2) You may use a calculator and a notecard.
(3) Show your work in details.
(4) Be sure to spell your TA’s name correctly.
(5) Have a nice Thanksgiving.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
(1) (15 points) Find the tangent line of the curve
\[2 \sin x \cos y = 1\]
at the point \(\left(\pi/4, \pi/4\right)\).
(2) (10 points) Let $f(x) = \cot x$. Find $f'''(\pi/4)$.
(3) (30 points) Find the derivatives of the following functions.

(a) (10 points) \(f(x) = \frac{x}{\sin x} \).

(b) (10 points) \(f(x) = \sqrt{x \sqrt{x \sqrt{x}}} \).

(c) (10 points) \(f(x) = x^{\cos x} \).
(4) (15 points) Let \(f(x) \) be a function that is twice-differentiable at 0 and let \(F(x) = [f(x)]^2 \). Suppose that \(f(0) = 1, f'(0) = 2 \) and \(f''(0) = 3 \). Find \(F''(0) \).
(5) (10 points) Find the limit
\[
\lim_{x \to 0} \frac{\sin 2x}{\sin 3x}.
\]
(6) (20 points) Boyle’s Law states that when a sample of gas is compressed at a constant temperature, the pressure P and volume V satisfy the equation $PV = C$, where C is a constant. Suppose that at a certain instant the volume is 600 cm3, the pressure is 150 kPa, and the pressure is increasing at a rate of 20 kPa/min. At what rate is the volume decreasing at this instant?