9.3.4 (a) \(\int e^{-3x}dx = -e^{3x}/3 + C\)

(b) Write \(2^x = (e^{\ln 2})^x = e^{(\ln 2)x}\). So \(\int 2^x dx = e^{(\ln 2)x}/(\ln 2) + C = 2^x/(\ln 2) + C\).

(c) Write \(10^{x+3} = 10^3 \cdot e^{(\ln 10)x}\). So \(\int 10^{x+3} dx = 10^3 e^{(\ln 10)x}/(\ln 10) + C = 10^{x+3}/(\ln 10) + C\).

9.6.3 \(\int_0^{10} 2\pi x dx = 100\pi\).

9.6.8 (a) \(\int_0^4 f(x)dx = 2 \cdot 4 = 8\) and \(\int_4^6 f(x)dx = (2 \cdot 2)/2 = 2\). Therefore, \(\int_0^6 f(x)dx = 8 + 2\) gallons of water left the tank after 6 hours.

(b) Let \(t\) be the hours it takes for 9.5 gallons of water to leave the tank. Since 9.5 > 8, \(t\) is between 4 and 6. \(\int_t^6 f(x)dx = \int_0^6 f(x)dx - \int_0^t f(x)dx = 10 - 9.5 = 0.5\). On the other hand, \(\int_t^6 f(x)dx\) is the area of a right triangle with base \(6 - t\) and height \(6 - t\). So \((6 - t)^2/2 = 0.5\). Solve it and we obtain \(t = 5\) or \(t = 7\). Obviously, \(t = 7 > 6\) is impossible. So \(t = 5\).

10.2.53 Let \(h\) be the height of the box, \(w\) be the width of the base and \(l\) be the length of the base (all in m). Then \(w = 2h\) and \(lwh = 5\). And hence \(l = 5/wh = 5/(2h^2)\). The total surface area is

\[2wh + 2lh + 2l = 2(2h)h + 2(5/(2h^2))h + 2(5/(2h^2))(2h) = 4h^2 + 15/h.\]

10.2.54 Suppose that the water level is \(x\) cm above the bottom of the tank. The volume of water is \(V = \pi(200)^2x = 4(10)^4\pi x\) cm\(^3\), i.e., \(V = 40\pi x\) liters. Since \(dV/dt = 40\pi dx/dt = -5\), \(dx/dt = -1/(8\pi)\) cm per minute, i.e., \(-60/(8\pi) = -15/(2\pi)\) cm per hour. So the water level is falling \(15/(2\pi)\) cm per hour.

Page 187

1http://www.math.ucsb.edu/~xichen/math34b02w/hw34key.pdf
11.0.10 After transferring 2 liters from A to B, B contains $2 + 2 = 4$ liters of solution with concentration:
\[
\frac{2 \cdot 0.05 + 2 \cdot 0.1}{2 + 2} = 0.075.
\]
Then after transferring 1 liter from B to C, C contains $1 + 4 = 5$ liters of solution with concentration:
\[
\frac{1 \cdot 0.075 + 4 \cdot 0}{1 + 4} = 0.015.
\]
Finally after transferring 2 liters from C to A, A contains $2 + (3 - 2) = 3$ liters of solution with concentration:
\[
\frac{2 \cdot 0.015 + (3 - 2) \cdot 0.05}{2 + (3 - 2)} = (8/3)\%.
\]

11.0.15 (a) Suppose it takes t hours for the concentration to reach 2 mg/l. After t hours, the volume of the tank is $1000 + 20t$ liters and the amount of detergent is $4(20)t = 80t$ mg. So
\[
\frac{80t}{1000 + 20t} = 2.
\]
Solve it and we obtain $t = 50$.

(b) Same idea as (a). Let t be the hours it takes for the concentration to reach x mg/l. Then
\[
\frac{80t}{1000 + 20t} = x.
\]
Solve it for t and we obtain $t = 50x/(4 - x)$.

(d) If $x = 5$, t is negative. It means it is impossible for the concentration to reach 5 mg/l.

11.0.55 The whole process can be described by the following table.
Initially	A’s Money	B’s Money	C’s Money
A gives half to B | \(\frac{a}{2} \) | \(b + \frac{a}{2} \) | \(c \)
A takes half from C | \(\frac{a}{2} + \frac{c}{2} \) | \(b + \frac{a}{2} \) | \(\frac{c}{2} \)
B gives half to C | \(\frac{a}{2} + \frac{c}{2} \) | \(b + \frac{a}{2} + \frac{c}{2} \) | \(\frac{c}{2} + \frac{a}{4} \)
B takes half from A | \(\frac{a}{2} + \frac{b}{2} \) | \(b + \frac{a}{2} + \frac{c}{2} \) | \(\frac{c}{2} + \frac{b}{2} + \frac{a}{4} \)
C gives half to A | \(\frac{3}{8}a + \frac{b}{2} + \frac{c}{4} \) | \(\frac{b}{2} + \frac{a}{2} + \frac{c}{2} \) | \(\frac{3}{8}a + \frac{b}{2} + \frac{3}{8}c \)
C takes half from B | \(\frac{3}{8}a + \frac{b}{2} + \frac{c}{4} \) | \(b + \frac{a}{2} + \frac{c}{2} \) | \(\frac{3}{8}a + \frac{b}{2} + \frac{3}{8}c \)

Therefore, in the end, C has \(\left(\frac{3}{8}c + \frac{b}{2} + \frac{3}{8}a \right) - \left(\frac{3}{8}a + \frac{b}{2} + \frac{b}{4} \right) = \frac{b}{4} - \frac{c}{8} \) dollars more than A.

11.0.59 Let \(x \) be the length of the edge of the base and \(y \) be the height of the box. Then the volume of the box is \(x^2y \) and hence \(x^2y = 20 \). Consequently, \(y = 20/x^2 \). The top and bottom of box both have area \(x^2 \). So the total cost of the top and bottom is \(2x^2 \cdot 30 = 60x^2 \). Each of the four side faces has area \(xy = x(20/x^2) = 20/x \). So the total cost of the sides is \(4(20/x) \cdot 20 = 1600/x \). Therefore, the total cost of the box is \(60x^2 + 1600/x \).

11.0.60 Suppose that they meet each other at \(x \) miles from LA. The speed of plane A is \(500 - 100 = 400 \) mph. When the two meet, plane A has flied \((5000 - x)/400 \) hours. The speed of plane B is \(500 + 100 = 600 \) mph. When the two meet, plane B has flied \(x/600 \) hours. Therefore,

\[
\frac{5000 - x}{400} - \frac{x}{600} = 1.
\]

Solve it and we have \(x = 2760 \). So they meet 2760 miles off LA.

11.0.62 After half of the contents of B is poured into A, A contains \(1+1 = 2 \) liters of mixture with \(1 \cdot 0.1 + 1 \cdot 0.5 = 0.6 \) liters of oil. Suppose that \(x \) liters of oil needed to added to A to produce a mixture which is 60% of oil. After \(x \) liters of oil is added to A, A contains \(2 + x \) liters of mixture with \(0.6 + x \) liters of oil. Therefore,

\[0.6 + x = 0.6(2 + x).
\]

Solve it and we obtain \(x = 1.5 \).