(1) No books, notes or calculators are allowed.
(2) Show your work in details.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
You may need the following formulas: The curvature and torsion of a smooth curve $\gamma : I \rightarrow \mathbb{R}^3$ are given by

$$\kappa = \frac{||\gamma' \wedge \gamma''||}{||\gamma'||^3}$$

$$\tau = -\frac{\det \begin{bmatrix} \gamma' & \gamma'' & \gamma''' \end{bmatrix}}{||\gamma' \wedge \gamma''||^2}$$

(1) (40 points) Let $\gamma : \mathbb{R} \rightarrow \mathbb{R}^3$ be the curve $\gamma(t) = (\cos t, \sin t, 2t)$.

(a) (20 points) Find the curvature and torsion of γ.

(b) (10 points) Let T, N and B be the unit tangent, normal and binormal vectors of γ, respectively, and let

$$T' = \frac{dT}{dt}, \quad N' = \frac{dN}{dt} \quad \text{and} \quad B' = \frac{dB}{dt}.$$

Write down the Frenet-Serret equations relating \{T, N, B\} and \{T', N', B'\}.
(c) (10 points) Express

\[T'' = \frac{d^2T}{dt^2}, \quad N'' = \frac{d^2N}{dt^2} \quad \text{and} \quad B'' = \frac{d^2B}{dt^2} \]

as linear combinations of \(T, N \) and \(B \).
(2) (30 points) Do the following:

(a) (15 points) Find the minimum and maximum values of the curvature of the ellipse

\[C = \left\{ (x, y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\} \subset \mathbb{R}^2 \]

where \(a \) and \(b \) are constants satisfying \(a \geq b > 0 \).
(b) (15 points) Show that two ellipses

\[C_1 = \left\{ (x, y) : \frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1 \right\} \]

\[C_2 = \left\{ (x, y) : \frac{x^2}{a_2^2} + \frac{y^2}{b_2^2} = 1 \right\} \]

in \(\mathbb{R}^2 \) are congruent if and only if either \(a_1 = a_2, b_1 = b_2 \) or \(a_1 = b_2, b_1 = a_2 \), where \(a_i \) and \(b_i \) are positive constants for \(i = 1, 2 \).
(3) (30 points) Let $\gamma: I \to \mathbb{R}^2$ be a regular smooth curve parameterized by arc length with nowhere vanishing curvature $\kappa(s)$ on the open interval I. A circular disk of radius 1 rolls without slipping along $\gamma(I)$:

(a) (15 points) Find a curve $\alpha: I \to \mathbb{R}^2$ parameterizing the trajectory of a fixed point on the boundary of the disk. Express your answer in terms of $\gamma, \gamma', \gamma''$ and κ.
(b) (15 points) Find the curvature of α. Express your answer in terms of κ, κ' and $\int \kappa ds$. For simplicity, you may assume that $\det \left[\begin{array}{cc} \gamma' & \gamma'' \end{array} \right] > 0$.