Math 341 Homework 7 (due Mar. 20)

Problems from the book: (pp. 23-24) 4.4, 4.8, 4.9, 4.10, 4.13

Hints

4.4 Use Caratheodory theorem and Theorem 4.13. We want to show that \(\text{conv}(A) \cap \text{conv}(B) = \emptyset \) if any \(n + 1 \) points of \(B \) can be strictly separated from \(A \) by a hyperplane. If \(\text{conv}(A) \cap \text{conv}(B) \neq \emptyset \), then there is a point \(x \in \text{conv}(A) \cap \text{conv}(B) \). By Caratheodory theorem, \(x \in \text{conv}\{x_1, x_2, \ldots, x_{n+1}\} \) with \(T = \{x_1, x_2, \ldots, x_{n+1}\} \subset B \). Since there is a hyperplane strictly separating \(T \) and \(A \), \(\text{conv}(T) \cap \text{conv}(A) = \emptyset \). Contradiction.

4.8 Use Theorem 4.7. Since \(A \cap \text{int}(B) = \emptyset \) and \(\text{int}(B) = \emptyset \), \(A \) and \(B \) can be separated by a hyperplane \(H = \{ f(x) = \alpha \} \). Suppose that \(A \subset M = \{ f(x) \geq \alpha \} \) and \(B \subset N = \{ f(x) \leq \alpha \} \). So \(\text{bd}(B) \subset N \). Show that \(A \subset H \).

4.9 You need to show that \(\text{cl}(S) \neq \mathbb{R}^n \). If \(\dim(S) < n \), then \(\text{cl}(S) \subset \text{aff}(S) \neq \mathbb{R}^n \). If \(\dim(S) = n \), then \(\text{int}(S) \neq \emptyset \); pick a point \(p \not\in S \) and apply Theorem 4.7 to \(\{p\} \) and \(S \). Show that \(\text{cl}(S) \) is contained in a closed half-space.

4.10 (a) Without the loss of generality, you may assume that \(A \cup B = \mathbb{R}^n \). Show that at least one of \(A \) and \(B \) has nonempty interior. By Theorem 4.7, \(A \) and \(B \) are separated by a hyperplane \(H = \{ f(x) = \alpha \} \). Suppose that \(A \subset M = \{ f(x) \geq \alpha \} \) and \(B \subset N = \{ f(x) \leq \alpha \} \). Use the fact that \(A \cup B = \mathbb{R}^n \) to show that \(\text{cl}(A) = M \) and \(\text{cl}(B) = N \). Then it follows that \(\text{aff}(A) = \text{aff}(B) = \mathbb{R}^n \).

(b) For \(A \cap B \neq \emptyset \), choose \(A = \mathbb{R}^n \) and \(B \) a hyperplane. For \(A \) and \(B \) not convex, choose \(A = \mathbb{R}^n \setminus H \) and \(B = H \), where \(H \) is a hyperplane.

4.13 Follow the proof of Theorem 4.12.