3.8 (p. 33) Let \(u = (a_1, a_2, a_3, a_4) \) and \(H = \{ \langle u, x \rangle = \alpha \} \). So we are supposed to solve the system of linear equations
\[
\begin{cases}
 a_1 + a_3 - \alpha = 0 \\
 2a_1 + 3a_2 + a_3 - \alpha = 0 \\
 a_1 + 2a_2 + 2a_3 - \alpha = 0 \\
 a_1 + a_2 + a_3 + a_4 - \alpha = 0
\end{cases}
\]
with unknown \((a_1, a_2, a_3, a_4, \alpha)\). Use Guassian reduction:
\[
\begin{bmatrix}
 1 & 0 & 1 & 0 & -1 & 0 \\
 2 & 3 & 1 & 0 & -1 & 0 \\
 1 & 2 & 2 & 0 & -1 & 0 \\
 1 & 1 & 1 & 1 & -1 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & 0 & 1 & 0 & -1 & 0 \\
 0 & 1 & 0 & 1 & 0 & 0 \\
 0 & 3 & -1 & 0 & 1 & 0 \\
 0 & 2 & 1 & 0 & 0 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & 0 & 0 & -3 & 0 & 0 \\
 0 & 1 & 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 3 & -1 & 0 \\
 0 & 0 & 0 & -5 & 1 & 0
\end{bmatrix}
\]
So \((3, -1, 2, 1, 5)\) is a solution. Therefore, \(u = (3, -1, 2, 1, 5) \) and \(H = \{ 3x_1 - x_2 + 2x_3 + x_4 = 5 \} \). Of course, any multiples of \((3, -1, 2, 1, 5)\) are valid answers.

3.10 (p. 33) (a) Use 3.9. Since \(\text{aff}(S) \) is closed, \(\text{cl} (\text{aff}(S)) = \text{aff}(S) \). Since \(S \subset \text{aff}(S) \), \(\text{cl}(S) \subset \text{cl}(\text{aff}(S)) \).

(b) Since \(S \subset \text{cl}(S) \), \(\text{aff}(S) \subset \text{aff}(\text{cl}(S)) \). By (a), \(\text{cl}(S) \subset \text{aff}(\text{cl}(S)) \Rightarrow \text{aff}(\text{cl}(S)) \subset \text{aff}(\text{aff}(S)) = \text{aff}(S) \). Therefore, \(\text{aff}(S) = \text{aff}(\text{cl}(S)) \).

(c) Use 2.20. Let \(y \in \text{aff}(S) \) and \(x \in \text{relint}(S) \). Then \(\text{relint} \mathcal{F} \cap \text{relint}(S) \neq \emptyset \) by 2.20. Let \(z \in \text{relint} \mathcal{F} \cap \text{relint}(S) \). Then \(y \) is an affine combination of \(z \) and \(x \). Hence \(y \in \text{aff} (\text{relint}(S)) \). Therefore, \(\text{aff}(S) \subset \text{aff}(\text{relint}(S)) \).

On the other hand, \(\text{relint}(S) \subset S \Rightarrow \text{aff}(\text{relint}(S)) \subset \text{aff}(S) \). Therefore, \(\text{aff}(\text{relint}(S)) = \text{aff}(S) \).

3.11 (p. 33) Two hyperplanes \(H_1 \) and \(H_2 \) are parallel to each other if \(H_2 = x_0 + H_1 \) for some \(x_0 \).

Suppose that \(H_1 \) and \(H_2 \) are parallel to each other such that \(H_2 = x_0 + H_1 \). Let \(H_1 = \{ \langle u, x \rangle = \alpha \} \) and \(\beta = \langle u, x_0 \rangle + \alpha \). We will show that \(H_2 = \{ \langle u, x \rangle = \beta \} \).

Let \(x \in H_2 \). Then \(x = x_0 + y \) for some \(y \in H_1 \). Then
\[
\langle u, x \rangle = \langle u, x_0 + y \rangle = \langle u, x_0 \rangle + \langle u, y \rangle = \langle u, x_0 \rangle + \alpha = \beta
\]
Therefore, \(x \in \{ \langle u, x \rangle = \beta \} \) and \(H_2 \subset \{ \langle u, x \rangle = \beta \} \).
Let \(x \in \{ \langle u, x \rangle = \beta \} \). Then
\[
\langle u, x - x_0 \rangle = \langle u, x \rangle - \langle u, x_0 \rangle = \beta - \langle u, x_0 \rangle = \alpha
\]
Therefore, \(x - x_0 \in H_1 \) and \(x \in x_0 + H_1 = H_2 \). So \(\{ \langle u, x \rangle = \beta \} \subset H_2 \) and \(\{ \langle u, x \rangle = \beta \} = H_2 \). Consequently, \(u \) is the normal vector of both \(H_1 \) and \(H_2 \).

On the other hand, assume that the normal vectors of \(H_1 \) and \(H_2 \) are multiples of each other. Let \(H_1 = \{ \langle u, x \rangle = \alpha \} \) and \(H_2 = \{ \langle v, x \rangle = \beta \} \) with \(v = \lambda u \) for some \(\lambda \neq 0 \).

Let \(x_1 \in H_1 \) and \(x_2 \in H_2 \). We will show that \(H_1 = (x_1 - x_2) + H_2 \).

Let \(x \in H_1 \). Then
\[
\langle v, x + x_2 - x_1 \rangle = \langle v, x \rangle + \langle v, x_2 \rangle - \langle v, x_1 \rangle = \langle v, x \rangle - \langle v, x_1 \rangle + \beta
\]
\[
= (\lambda u, x) - (\lambda u, x_1) + \beta = \lambda \langle u, x \rangle - \lambda \langle u, x_1 \rangle + \beta
\]
\[
= \lambda \alpha - \lambda \alpha + \beta = \beta
\]
So \(x + x_2 - x_1 \in H_2 \) and \(x \in (x_1 - x_2) + H_2 \). Therefore, \(H_1 \subset (x_1 - x_2) + H_2 \). Similarly, \(H_2 \subset (x_2 - x_1) + H_1 \), i.e., \((x_1 - x_2) + H_2 \subset H_1 \). So \(H_1 = (x_1 - x_2) + H_2 \) and \(H_1 \) and \(H_2 \) are parallel.

3.14 (p. 33) (a) Let \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \) be two points in \(f(A) \), where \(x_1, x_2 \in A \). Then \(\alpha y_1 + \beta y_2 = \alpha f(x_1) + \beta f(x_2) = f(\alpha x_1 + \beta x_2) \) for \(\alpha, \beta \geq 0 \) and \(\alpha + \beta = 1 \). Since \(A \) is convex, \(\alpha x_1 + \beta x_2 \in A \) and hence \(f(\alpha x_1 + \beta x_2) \in f(A) \). So \(\alpha y_1 + \beta y_2 \in f(A) \) and \(f(A) \) is convex.

(b) Let \(x_1, x_2 \in f^{-1}(B) \). Then \(f(x_1), f(x_2) \in B \). Since \(B \) is convex, \(f(\alpha x_1 + \beta x_2) = \alpha f(x_1) + \beta f(x_2) \in B \) for \(\alpha, \beta \geq 0 \) and \(\alpha + \beta = 1 \). Therefore, \(f^{-1}(B) \) is convex.

4.1 (p. 40) By Theorem 4.12, \(\text{conv}(B) \) cannot be closed. So we are looking for a closed set \(B \) such that \(\text{conv}(B) \) is not closed. Take \(B = \{ y = x^2, x \geq 0 \} \). Then \(\text{conv}(B) = \{ y \geq x^2, x > 0 \} \cup \{ (0, 0) \} \). Let \(A = \{ x = 0, 1 \leq y \leq 2 \} \).

Since \(A \) is convex, \(\text{conv}(A) = A \). Obviously, \(\text{conv}(A) \cap \text{conv}(B) = \emptyset \).

Next, we show that \(A \) and \(B \) cannot be strictly separated by a line. Suppose that \(A \) and \(B \) is strictly separated by a line \(L \). Since \(L \) strictly separate \(A \) and \(B \), \(L \cap A = L \cap B = \emptyset \).

If the slope of \(L \) is infinite, then \(L = \{ x = c \} \). If \(c \leq 0 \), then \(A, B \subset \{ x \geq c \} \) and hence \(L \) does not separate \(A \) and \(B \); otherwise, if \(c > 0 \), \(L \cap B = \emptyset \). Either way we have a contradiction.

Suppose that \(L \) has finite slope. Let \(L = \{ y - kx = b \} \). We have either \(B \subset \{ y - kx < b \} \) or \(B \subset \{ y - kx > b \} \).

If \(B \subset \{ y - kx < b \} \), then \(x^2 - kx < b \) for all \(x \geq 0 \). This is impossible since \(\lim_{x \to \infty}(x^2 - kx) = \infty \). Therefore, \(B \subset \{ y - kx > b \} \) and \(A \subset \{ y - kx < b \} \).

Since \(B \subset \{ y - kx > b \} \), \((0, 0) \in \{ y - kx > b \} \) and hence \(0 > b \). On the other hand, since \(A \subset \{ y - kx < b \} \), \((0, 1) \in \{ y - kx < b \} \) and hence \(1 < b \). Contradiction.

4.2 (p. 40) Let \(\{ F_\lambda : \lambda \in I \} \) be the collection of all closed half-spaces that contain \(S \). Obviously, \(S \subset \cap_{\lambda \in I} F_\lambda \). We want to show that \(S \supset \cap_{\lambda \in I} F_\lambda \).

Let \(p \in \cap_{\lambda \in I} F_\lambda \). Suppose that \(p \notin S \).
Since \(\{p\} \) and \(S \) are convex, \(\{p\} \) is compact and \(S \) is closed, by Theorem 4.12, \(\{p\} \) and \(S \) are strictly separated by a hyperplane \(H = \{f(x) = \alpha\} \). Suppose that \(p \in M = \{f(x) \geq \alpha\} \) and \(S \subset N = \{f(x) \leq \alpha\} \). Since \(H \) strictly separates \(\{p\} \) and \(S \), \(p \notin H \) and hence \(p \notin N \). Since \(S \subset N \), \(N \in \{F_\lambda : \lambda \in I\} \) and hence \(p \in \cap_{\lambda \in I} F_\lambda \subset N \). Contradiction.

Therefore, \(p \in S \) and \(\cap_{\lambda \in I} F_\lambda \subset S \). So \(\cap_{\lambda \in I} F_\lambda = S \).

4.3 (p. 40) Since \(\pi \) is linear and \(S \) is convex, \(\pi(S) \) is convex by 3.14. To show that \(\pi(S) \) is relative open in \(G \), we prove first the fact that \(\pi(B(x, \delta)) = B(\pi(x), \delta) \cap G \).

Let \(x = (x_1, x_2, \ldots, x_n) \). For every \(y = (y_1, y_2, \ldots, y_n) \in B(x, \delta) \), we have
\[
(x_1 - y_1)^2 + (x_2 - y_2)^2 + \ldots + (x_n - y_n)^2 < \delta^2
\]
Then
\[
\|\pi(y) - \pi(x)\|^2 = (x_{k+1} - y_{k+1})^2 + \ldots + (x_n - y_n)^2
\]
\[
\leq (x_1 - y_1)^2 + (x_2 - y_2)^2 + \ldots + (x_n - y_n)^2 < \delta^2
\]
So \(\pi(y) \in B(\pi(x), \delta) \) and \(\pi(B(x, \delta)) \subset B(\pi(x), \delta) \cap G \).

On the other hand, for each \(y = (0, 0, \ldots, 0, y_{k+1}, \ldots, y_n) \in B(\pi(x), \delta) \cap G \), \(y = \pi(w) \), where \(w = (x_1, x_2, \ldots, x_k, y_{k+1}, \ldots, y_n) \). Since \(||w - x|| = ||y - \pi(x)|| < \delta \), \(w \in B(x, \delta) \) so \(y \in \pi(B(x, \delta)) \). Therefore, \(B(\pi(x), \delta) \cap G \subset \pi(B(x, \delta)) \) and \(\pi(B(x, \delta)) = B(\pi(x), \delta) \cap G \).

Since \(S \) is open, for every point \(x \in S \), there exists an open ball \(B(x, \delta) \subset S \). Since \(\pi(B(x, \delta)) = B(\pi(x), \delta) \cap G \), \(\pi(S) \) is open in \(G \).

4.5 (p. 40) Let \(S = \{x \in \mathbb{R}^n : f(x) \geq c\} \) be a half-space in \(\mathbb{R}^n \), where \(f(x) \) is a linear functional \(f : \mathbb{R}^n \to \mathbb{R} \).

Let \(B = [c, \infty) \subset \mathbb{R} \). Obviously, \(S = f^{-1}(B) \). Since \(B \) is convex, \(S = f^{-1}(B) \) is convex by 3.14.

4.6 (p. 40) By Theorem 4.7, \(A \) and \(B \) are separated by a hyperplane \(H \). We will show that \(H \) actually strictly separates \(A \) and \(B \). Let \(H = \{f(x) = c\} \). Suppose that \(A \subset U = \{f(x) \geq c\} \) and \(B \subset V = \{f(x) \leq c\} \).

Since \(A \) is open, \(A \subset \text{int}(U) = \{f(x) > c\} \). Similarly, \(B \subset \text{int}(V) = \{f(x) < c\} \). Therefore, \(H \) strictly separates \(A \) and \(B \).