2.37 (p. 25) (a) Let \(B = \{ x^2 + y^2 \leq 1 \} \) be a disk and \(p \) be a point on the circle \(\text{bd}(B) = \{ x^2 + y^2 = 1 \} \). Let \(S = B \setminus \{ p \} \). First, we show that \(S \) is convex. Let \(u, v \in S \) and \(w \in \text{relin}(xy) \). Since \(u, v \in B \) and \(B \) is convex, \(w \in B \). Obviously, \(w \not\in \text{bd}(B) \) and hence \(w \neq p \). Therefore, \(w \in S \) and \(\bar{uv} \subset S \). So \(S \) is convex. Next, we show that \(S \) is enclosed by \(B \). Let \(A \) be the set with \(S \subset A \subset B \). Then \(A \setminus S \subset B \setminus S = \{ p \} \). So \(A \setminus S = \emptyset \) or \(\{ p \} \). That is, \(A = S \) or \(B \). Therefore, there are no sets between \(S \) and \(B \) and \(S \) is enclosed by \(B \). Finally, we need to show that \(S \) is enclosed by exactly one convex set. Suppose that \(S \) is enclosed by a convex set \(A \). Let \(q \) be a point in \(A \) such that \(q \notin S \). If \(p = q \), then \(S \subset B \subset A \) and hence \(A = B \). Suppose that \(p \neq q \). Then \(q \notin B \). So \(d(o,q) > 1 \), where \(o \) is the origin. Since \(A \) is convex, \(\overline{pq} \subset A \), i.e., \(\lambda q \in A \) for every \(1 \geq \lambda \geq 0 \). Let \(r = d(o,q) \). Then

\[
x = \frac{1 + r}{2r} q \in A
\]

but \(x \notin B \) because \(d(o,x) = ||x|| > 1 \). Then \(S \subset \text{conv}(S \cup \{ x \}) \subset A \) with \(S \neq \text{conv}(S \cup \{ x \}) \neq A \). Contradiction.

Similarly, we can construct convex sets enclosed by exactly \(n \) convex sets for all \(n \). Let \(G = \{ p_1, p_2, ..., p_n, ... \} \subset \text{bd}(B) \), \(A_n = B \setminus \{ p_1, p_2, ..., p_n \} \) and \(A = B \setminus G \).

Then \(A, A_1, A_2, ..., A_n, ... \) are convex; \(A_n \) is enclosed by exactly \(n \) convex sets, which are \(A_n \cup \{ p_1 \} \), \(A_n \cup \{ p_2 \} \), ..., and \(A_n \cup \{ p_n \} \); and \(A \) is enclosed by infinitely many convex sets, which are \(A \cup \{ p_1 \}, A \cup \{ p_2 \}, ..., A \cup \{ p_n \}, ... \).

(b) Let \(D = \{ x^2 + y^2 < 1 \} \) and \(G = \{ p_1, p_2, ..., p_n, ... \} \subset \text{bd}(D) \). Let \(A_i = D \cup \{ p_1, p_2, ..., p_i \} \). Then \(A_1 \subset A_2 \subset ... \subset A_i \subset A_{i+1} \subset ... \) with \(A_{i+1} \) enclosing \(A_i \).

(c) This is true. Suppose that there exist two distinct points \(p, q \notin A \) and \(p, q \notin B \). Then \(B \subset \text{conv}(B \cup \{ p \}) \subset A \). Since \(A \) encloses \(B \), there are no convex sets between \(B \) and \(A \) and hence \(\text{conv}(B \cup \{ p \}) = A \). Therefore, \(q \in \text{conv}(B \cup \{ p \}) \Rightarrow q \) is a convex combination of \(x_1, x_2, ..., x_{n-1}, p \) with \(x_1, x_2, ..., x_{n-1} \in B \). So there exist \(\lambda_1, \lambda_2, ..., \lambda_{n-1}, \lambda_n \geq 0 \) such that \(\sum_{i=1}^{n} \lambda_i = 1 \) and

\[
q = \lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_{n-1} x_{n-1} + \lambda_n p.
\]

We let

\[
y = \frac{1}{\lambda_1 + \lambda_2 + ... + \lambda_{n-1}} (\lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_{n-1} x_{n-1})
\]

Then \(y \) is a convex combination of \(x_1, x_2, ..., x_{n-1} \) and hence \(y \in B \). And

\[
q = (\lambda_1 + \lambda_2 + ... + \lambda_{n-1}) y + \lambda_n p = (1 - \lambda_n) y + \lambda_n p
\]

and hence \(q \in \overline{pq} \) and \(q \neq p, y \).
By the same argument, we can show that \(p \in \overline{pq} \) for some \(x \in B \). Therefore,
\[
q = \alpha_1 p + \beta_1 y \\
p = \alpha_2 q + \beta_2 x
\]
where \(\alpha_i, \beta_i > 0 \) and \(\alpha_1 + \beta_1 = 1 \). We may eliminate \(q \) by multiplying the first equation by \(\alpha_2 \) and adding it to the second equation:
\[
p = \alpha_1 \alpha_2 p + \alpha_2 \beta_1 y + \beta_2 x
\]
So
\[
p = \frac{1}{1 - \alpha_1 \alpha_2} (\beta_2 x + \alpha_2 \beta_1 y)
\]
Since
\[
\beta_2 + \alpha_2 \beta_1 = 1 - \alpha_2 + \alpha_2 \beta_1 \\
= 1 - (1 - \beta_1) \alpha_2 = 1 - \alpha_1 \alpha_2
\]
p is a convex combination of \(x \) and \(y \), i.e., \(p \in \overline{xy} \). Then \(p \in B \), which is a contradiction.

(d) This is false. Let \(x_1, x_2, x_3 \) be three points on \(\mathbb{R}^2 \) not lying on a line and \(\Delta x_1 x_2 x_3 \) be the triangle with vertices at \(x_1, x_2, x_3 \) (including the boundary). Let \(B = (\Delta x_1 x_2 x_3 \setminus \overline{x_1 x_2}) \cup \{x_1\} \) (we remove the edge \(x_1 x_2 \) from the triangle but keeping one vertex \(x_1 \). We will show that \(B \) is convex but \(A = B \cup \{x_2\} \) is not.

To show that \(B \) is convex, let \(u, v \in B \) and we show that \(\overline{uv} \subset B \). Since \(u, v \in \Delta x_1 x_2 x_3 \),
\[
u = a_1 x_1 + a_2 x_2 + a_3 x_3 \\
v = b_1 x_1 + b_2 x_2 + b_3 x_3
\]
where \(a_i, b_i \geq 0 \) and \(a_1 + a_2 + a_3 = b_1 + b_2 + b_3 = 1 \). Let \(w = \alpha u + \beta v \in \text{relint}(\overline{uv}) \), where \(\alpha, \beta > 0 \) and \(\alpha + \beta = 1 \). Then
\[
\alpha u + \beta v = (\alpha a_1 + \beta b_1) x_1 + (\alpha a_2 + \beta b_2) x_2 + (\alpha a_3 + \beta b_3) x_3
\]
If either \(a_3 > 0 \) or \(b_3 > 0 \), then \(\alpha a_3 + \beta b_3 > 0 \) and hence \(w \notin \overline{x_1 x_2} \); and since \(w \in \Delta x_1 x_2 x_3 \), \(w \in B \). Suppose that \(a_3 = b_3 = 0 \). Then \(u, v \in \overline{x_1 x_2} \).
And since \(u, v \in B \), \(u, v = x_1 \). Then \(w = x_1 \in B \). So \(B \) is convex.

Since \(x_1, x_2 \in A \) and \(\overline{x_1 x_2} \notin A \), \(A \) is not convex.

3.1 (p. 32) By the definition of normal vector, \(H = \{x : \langle u, x \rangle = \alpha\} \). Since \(x_1, x_2 \in H \), \(\langle u, x_1 \rangle = \langle u, x_2 \rangle = \alpha \). So \(\langle u, x_1 \rangle - \langle u, x_2 \rangle = 0 \) and \(\langle u, x_1 - x_2 \rangle = 0 \), i.e., \(u \) is orthogonal to \(x_1 - x_2 \).

3.2 (p. 32) Let \(e_1, e_2, ..., e_{n-1} \) be a basis for \(V \).

Since \(y \notin V \), \(\{e_1, e_2, ..., e_{n-1}, y\} \) is linearly independent and hence a basis for \(\mathbb{R}^n \). Therefore every point \(p \in \mathbb{R} \) is a linear combination of \(e_1, e_2, ..., e_{n-1}, y \), i.e.,
\[
p = a_1 e_1 + a_2 e_2 + ... + a_{n-1} e_{n-1} + ay
\]
Let \(x = a_1 e_1 + a_2 e_2 + ... + a_{n-1} e_{n-1} \). Then \(x \in V \) and \(p = x + ay \).
Next we show such representation is unique. Suppose that \(p = x + \alpha y = x' + \alpha' y \) with \(x, x' \in V \). Then \(x - x' = (\alpha' - \alpha)y \). If \(x = x' \), \(\alpha = \alpha' \). If \(x \neq x' \), \(\alpha \neq \alpha' \); then \(y = (\alpha' - \alpha)^{-1}(x - x') \in V \). \(\text{Contradiction.} \)

3.3 (p. 32) We want to show that \(x_0 + H_1 = [f : \beta] \).

Let \(x \in x_0 + H_1 \). \(x = x_0 + y \) with \(y \in H_1 \). Since \(y \in H_1 \), \(f(y) = \alpha \). So \(f(x) = f(x_0) + f(y) = f(x_0) + \alpha = \beta \). Therefore, \(x \in [f : \beta] \) and \(x_0 + H_1 \subseteq [f : \beta] \).

Let \(x \in [f : \beta] \). Then \(f(x) = \beta \). So \(f(x - x_0) = f(x) - f(x_0) = \beta - f(x_0) = \alpha \). Hence \(x - x_0 \in H_1 \) and \(x = x_0 + (x - x_0) \in x_0 + H_1 \). \(\text{So } [f : \beta] \subseteq x_0 + H_1 \).

In conclusion, \(x_0 + H_1 = [f : \beta] \).

3.4 (p. 32) (a) \(u = (2, -3) \)

(b) \((-1, 1) + H = \{2x - 3y = -3\} \).

3.5 (p. 32) We show that \(F_1 = F_2 \) if \(x_1 - x_2 \in V \) and \(F_1 \cap F_2 = \emptyset \).

Suppose that \(x_1 - x_2 \in V \). Then \((x_1 - x_2) + V = V \Rightarrow x_1 + V = x_2 + V \), i.e., \(F_1 = F_2 \).

Suppose that \(x_1 - x_2 \notin V \). We want to show that \(F_1 \cap F_2 = \emptyset \). Otherwise, assume that \(F_1 \cap F_2 \neq \emptyset \). Let \(x \in F_1 \cap F_2 \). Since \(x \in F_1 = x_1 + V \), \(x - x_1 \in V \); since \(x \in F_2 = x_2 + V \), \(x - x_2 \in V \). And since \(V \) is a linear subspace, \((x - x_2) - (x - x_1) \in V \), i.e., \(x_1 - x_2 \in V \). \(\text{Contradiction.} \) So \(F_1 \cap F_2 = \emptyset \).

3.6 (p. 33) \(L = \{x + 4y = 7\} \).

3.9 (p. 33) Let \(F = W + x \) where \(x \in \mathbb{R}^n \) and \(W \) is a linear subspace of \(\mathbb{R}^n \). There is nothing to prove if \(F = \mathbb{R}^n \). Let us assume that \(F \neq \mathbb{R}^n \). So \(W \) is a proper subspace of \(\mathbb{R}^n \).

Choose an orthonormal basis \(e_1, e_2, ..., e_n \) for \(\mathbb{R}^n \) with \(e_1, e_2, ..., e_k \) generating \(W \) and \(\|e_i\| = 1 \) for \(i = 1, 2, ..., n \).

Let \(y \notin F \) and \(y - x = a_1 e_1 + a_2 e_2 + ... + a_k e_k + a_{k+1} e_{k+1} + a_{k+2} e_{k+2} + ... + a_n e_n \). Since \(y - x \notin W \), \(a_{k+1}, a_{k+2}, ..., a_n \) are not all zero. Let

\[
r = \sqrt{a_{k+1}^2 + a_{k+2}^2 + ... + a_n^2}.
\]

Then \(r > 0 \).

Let \(z \in F \) and \(z = b_1 e_1 + b_2 e_2 + ... + b_k e_k \). Then

\[
||y - z|| = ||(a_1 - b_1)e_1 + (a_2 - b_2)e_2 + ... + (a_k - b_k)e_k + a_{k+1} e_{k+1} + a_{k+2} e_{k+2} + ... + a_n e_n||
= \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + ... + (a_k - b_k)^2 + a_{k+1}^2 + a_{k+2}^2 + ... + a_n^2} \geq r
\]

That is, for every point \(z \in F \), \(d(y, z) \geq r \). Thus \(B(y, r) \cap F = \emptyset \Rightarrow B(y, r) \subset F^c \). So \(F^c \) is open and \(F \) is closed.