Math 341 Homework 4 Solution

2.4 (p. 22) Note that \(\lambda B(x, \delta) = \{ \lambda y : \|y - x\| < \delta \} \) and \(B(\lambda x, \lambda \delta) = \{ z : \|z - \lambda x\| < \lambda \delta \} \).

Let \(\lambda y \in \lambda B(x, \delta) \). Then \(\|\lambda y - \lambda x\| = \lambda \|y - x\| < \lambda \delta \). So \(\lambda y \in B(\lambda x, \lambda \delta) \) and \(\lambda B(x, \delta) \subset B(\lambda x, \lambda \delta) \).

On the other hand, let \(z \in B(\lambda x, \lambda \delta) \). Then
\[
\|\lambda^{-1} z - x\| = \frac{1}{\lambda} \|z - \lambda x\| < \delta
\]
So \(\lambda^{-1} z \in B(x, \delta) \) and \(z \in \lambda B(x, \delta) \). Therefore, \(\lambda B(x, \delta) \supset B(\lambda x, \lambda \delta) \).

In conclusion, \(\lambda B(x, \delta) = B(\lambda x, \lambda \delta) \).

2.17 (p. 23) Pick three points \(x_1, x_2, x_3 \in \mathbb{R}^2 \) not lying on a line. Let \(A = \overline{x_1x_2} \) and \(B = \overline{x_1x_2x_3} \) (including the boundary), i.e.,
\[
B = \{ \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 : \lambda_1 + \lambda_2 + \lambda_3 = 1, \lambda_1, \lambda_2, \lambda_3 \geq 0 \}
\]
Obvious, \(A \subset B \) is one side of the triangle. But
\[
\text{relint}(A) = \overline{x_1x_2} \setminus \{x_1, x_2\}
\]
and
\[
\text{relint}(B) = B \setminus (\overline{x_1x_2} \cup \overline{x_2x_3} \cup \overline{x_3x_1})
\]
That is, \(\text{relint}(A) \) is the line segment \(\overline{x_1x_2} \) with the two ending points removed and \(\text{relint}(B) \) is the triangle with three sides removed. Of course, \(\text{relint}(A) \not\subset \text{relint}(B) \).

2.18 (p. 23) If \(\overline{xy} \subset \text{bd}(S) \), there is nothing to prove. Otherwise, suppose that \(\overline{xy} \not\subset \text{bd}(S) \), there exists a point \(z \in \text{relint} \overline{xy} \) such that \(z \not\in \text{bd}(S) \).

And since \(z \in S \), \(z \in \text{int}(S) \). By 2.12, \(x \in \text{bd}(S) \) and \(z \in \text{int}(S) \) \(\Rightarrow \) \(\text{relint} \overline{xy} \subset \text{int}(S) \) and \(y \in \text{bd}(S) \) and \(z \in \text{int}(S) \) \(\Rightarrow \) \(\text{relint} \overline{yz} \subset \text{int}(S) \).

Therefore, \(\text{relint} \overline{xy} \subset \text{int}(S) \).

2.20 (p. 23) First, I want state and prove a simple fact: If \(x, y, z \) are three distinct points on a line, then \(x \in \text{aff} \{y, z\} \), \(y \in \text{aff} \{x, z\} \) and \(z \in \text{aff} \{x, y\} \).

Without the loss of generality, let us assume that \(y \in \overline{xy} \). So \(y = (1 - \lambda)x + \lambda z \) for some \(0 < \lambda < 1 \). Obviously, \(y \) is an affine combination of \(x \) and \(z \) so \(y \in \text{aff} \{z, x\} \). Since
\[
z = \frac{1}{\lambda} y - \frac{1 - \lambda}{\lambda} x \text{ and } \frac{1}{\lambda} - \frac{1 - \lambda}{\lambda} = 1
\]
\(z \in \text{aff} \{x, y\} \). Similarly,
\[
x = \frac{1}{1 - \lambda} y - \frac{\lambda}{1 - \lambda} z \Rightarrow x \in \text{aff} \{y, z\}
\]
Now let us go back to the proof of the problem. Suppose that \(y \in \text{aff}(S) = W \). Since \(x \in \text{relint}(S) \), there exists an open ball \(B(x, r) \) such that \(B(x, r) \cap W \subset \text{relint}(S) \). Obviously, \(\overline{xy} \subset W \) and \(\text{relint}(\overline{xy}) \cap B(x, r) \neq \emptyset \). Therefore, \(\text{relint}(\overline{xy}) \cap B(x, r) \cap W \neq \emptyset \) and hence \(\text{relint}(\overline{xy}) \cap \text{relint}(S) \neq \emptyset \).

On the other hand, suppose that \(\text{relint}(\overline{xy}) \cap \text{relint}(S) \neq \emptyset \). Let \(z \in \text{relint}(\overline{xy}) \cap \text{relint}(S) \). Since \(x, y, z \) lie on the same line, \(y \in \text{aff} \{x, z\} \subset \text{aff}(S) \).
2.25 (p. 23) (a) \(\text{conv}\{x_1, x_2, x_3\} \) is the triangle \(\Delta x_1 x_2 x_3 \) and \(\text{pos}\{x_1, x_2, x_3\} \) is the cone over \(\Delta x_1 x_2 x_3 \) with vertex at the origin. So \(\text{pos}\{x_1, x_2, x_3\} = \{(x, y) : x \geq 0, y \geq 0\} \).

Since \(\{x_1, x_2, x_3\} \) is affinely independent, \(\text{aff}\{x_1, x_2, x_3\} = \mathbb{R}^2 \). So \(x \in \text{pos}\{x_1, x_2, x_3\} \cap \text{aff}\{x_1, x_2, x_3\} \) while \(x \notin \text{conv}\{x_1, x_2, x_3\} \).

(b) \(S \) is linearly independent.

2.26 (p. 24) (a) Since \(S \subset \text{conv}(S) \), \(\text{pos}(S) \subset \text{pos}(\text{conv}(S)) \). It suffices to prove that \(\text{pos}(\text{conv}(S)) \subset \text{pos}(S) \).

Let \(x \in \text{pos}(\text{conv}(S)) \). Then by (b), \(x = \lambda s \) for some \(\lambda \geq 0 \) and \(s \in \text{conv}(S) \). Since \(s \in \text{conv}(S) \), there exist \(x_1, x_2, ..., x_n \in S \) and \(a_1, a_2, ..., a_n \geq 0 \) such that \(s = a_1 x_1 + a_2 x_2 + ... + a_n x_n \) and \(\sum_{i=1}^n a_i = 1 \). So \(x = \sum_{i=1}^n a_i x_i \).

And since \(\lambda a_i \geq 0, x \in \text{pos}(S) \). Therefore, \(\text{pos}(\text{conv}(S)) \subset \text{pos}(S) \) and hence \(\text{pos}(\text{conv}(S)) = \text{pos}(S) \).

(b) Suppose that \(x \in \text{pos}(S) \). Then \(x = \sum_{i=1}^n a_i x_i \) for some \(a_1, a_2, ..., a_n \geq 0 \) and \(x_1, x_2, ..., x_n \in S \).

If \(a_1 = a_2 = ... = a_n = 0 \), then \(x = 0 = 0s \) for every \(s \in S \). Assume that \(a_1, a_2, ..., a_n \) are not all zero. Let \(\lambda = \sum_{i=1}^n a_i \). Then \(\lambda^{-1} x = \sum_{i=1}^n \lambda a_i^{-1} x_i \) is a convex combination of \(x_1, x_2, ..., x_n \) since \(\sum_{i=1}^n a_i = 1 \).

And since \(S \) is convex, \(\lambda^{-1} x \in S \). Let \(s = \lambda^{-1} x \). Then \(x = \lambda s \) with \(\lambda \geq 0 \) and \(s \in S \).

On the other hand, it is obvious that \(x = \lambda s \) with \(\lambda \geq 0 \) and \(s \in S \Rightarrow x \in \text{pos}(S) \).

2.30 (p. 24) (a) Check that the following matrix has rank 4 (use Gaussian reduction)

\[
\begin{bmatrix}
1 & -1 & 2 & -1 & 1 \\
2 & -1 & 2 & 0 & 1 \\
1 & 0 & 2 & 0 & 1 \\
1 & 0 & 3 & 1 & 1 \\
\end{bmatrix}
\]

(b) It is easy to check that \(x_i \in B \) for \(i = 1, 2, 3, 4 \). So \(A \subset B \). By (a), \(\dim A = 3 \). And since \(\dim B = 3 = \dim A \), \(A = B \) by 2.29.

2.31 (p. 24) (a) Suppose that \(F \notin G \) and \(G \notin F \). Then there exist \(x \in F \) and \(y \in G \) such that \(x \notin G \) and \(y \notin F \). Choose a point \(z \in \overline{xy} \) and \(z \neq x, y \).

Since \(F \cup G \) is convex, \(z \in F \cup G \). Since \(x, y, z \) lies on a line, \(x \in \text{aff}\{y, z\} \) and \(y \in \text{aff}\{x, z\} \). If \(z \in F \), then \(y \in \text{aff}\{x, z\} \subset F \); otherwise, if \(z \in G \), then \(x \in \text{aff}\{y, z\} \subset G \). Either way we have a contradiction.

(b) Take \(A = (0, 2) \) and \(B = (1, 3) \subset \mathbb{R} \). Then \(A, B, A \cup B \) are all convex but \(A \not\subset B \) and \(B \not\subset A \).

2.32 (p. 24) Suppose that \(x_1, x_2, ..., x_k \) are linearly dependent. Then there exist \(a_1, a_2, ..., a_k \) not all zero such that \(a_1 x_1 + a_2 x_2 + ... + a_k x_k = 0 \). Without the loss of generality, assume that \(a_1 \neq 0 \). Then

\[
a_1 \langle x_1, x_1 \rangle + a_2 \langle x_2, x_1 \rangle + ... + a_k \langle x_k, x_1 \rangle = 0
\]

Since \(x_1, x_2, ..., x_k \) are orthogonal to each other, \(\langle x_2, x_1 \rangle = ... = \langle x_k, x_1 \rangle = 0 \).

So \(a_1 \langle x_1, x_1 \rangle = 0 \Rightarrow \langle x_1, x_1 \rangle = 0 \Rightarrow x_1 = 0 \). Contradiction.
2.34 (p. 25) By Caratheodory’s Theorem, \(x \in \{x_1, x_2, \ldots, x_{n+1}\} \) for some \(x_1, x_2, \ldots, x_{n+1} \in S \). Let
\[
x = a_1x_1 + a_2x_2 + \ldots + a_{n+1}x_{n+1}
\]
with \(a_i \geq 0 \) and \(\sum_{i=1}^{n+1} a_i = 1 \).

Since \(\{v, x_1, x_2, \ldots, x_{n+1}\} \) is affinely dependent, there exist \(b, b_1, b_2, \ldots, b_{n+1}, \) not all zero, such that
\[

bv + b_1x_1 + b_2x_2 + \ldots + b_{n+1}x_{n+1} = 0
\]
and \(b + \sum_{i=1}^{n+1} b_i = 0 \). We may choose \(b \) such that \(b \leq 0 \) (otherwise, we replace \(b, b_i \) by \(-b, -b_i \)).

Let
\[

\mu = \min \{ \frac{a_i}{b_i} : b_i > 0 \}
\]
Then
\[
x = a_1x_1 + a_2x_2 + \ldots + a_{n+1}x_{n+1} - \mu(bv + b_1x_1 + b_2x_2 + \ldots + b_{n+1}x_{n+1})
\]
\[
\quad = -\mu bv + \sum_{i=1}^{n+1} (a_i - \mu b_i)x_i
\]

Obviously, \(-\mu b + \sum_{i=1}^{n+1} (a_i - \mu b_i) = \sum_{i=1}^{n+1} a_i - \mu(b + \sum_{i=1}^{n+1} b_i) = 1 \). And
\(-\mu b \geq 0, a_i - \mu b_i \geq 0 \) due to our choice of \(\mu \). At least one of \(a_i - \mu b_i \) is zero.

Let \(\mu = a_i/b_i \) for some \(1 \leq l \leq n+1 \). Then \(x \in \text{conv}\{v, x_1, x_2, \ldots, x_{n+1}\} \).

A1. Proof by induction. It holds when \(n = 2 \) (Theorem 2.9). Suppose that it holds for \(n < k \). We want to prove it for \(n = k \).

Let \(x \in \text{conv}\{x_1, x_2, \ldots, x_k\} \) with \(x_1, x_2, \ldots, x_k \in \text{int}(S) \). Let \(x = a_1x_1 + a_2x_2 + \ldots + a_kx_k \) with \(a_i \geq 0 \) and \(\sum_{i=1}^{k} a_i = 1 \). Without the loss of generality, assume that \(a_1 > 0 \). Let \(a = \sum_{i=1}^{k-1} a_i = 1 - a_k \). We write
\[
x = (a_1x_1 + a_2x_2 + \ldots + a_{k-1}x_{k-1}) + a_kx_k
\]
\[
= a\left(\frac{a_1}{a}x_1 + \frac{a_2}{a}x_2 + \ldots + \frac{a_{k-1}}{a}x_{k-1}\right) + (1 - a)x_k
\]
\[
= ay + (1-a)x_k
\]
Let
\[
y = \frac{a_1}{a}x_1 + \frac{a_2}{a}x_2 + \ldots + \frac{a_{k-1}}{a}x_{k-1}.
\]
Since
\[
\frac{a_1}{a} + \frac{a_2}{a} + \ldots + \frac{a_{k-1}}{a} = \frac{a}{a} = 1
\]
y \(\in \text{conv}\{x_1, x_2, \ldots, x_{k-1}\} \). By induction hypothesis, \(y \in \text{int}(S) \). Since
\(x = ay + (1-a)x_k \), \(x \in \text{conv}\{y, x_k\} \). Therefore, \(x \in \text{int}(S) \).

A2. Since \(S \) is closed, \(S \) has a minimum \(m \) if \(S \) is bounded from below and \(S \) has a maximum \(M \) if \(S \) is bounded from above. Then it is obvious that \(\text{conv}(S) \) can only be one of the following: \([m, M]\), \([m, \infty)\), \((\infty, M]\) or \((-\infty, \infty)\). All these are closed sets.