Math 325 Assignment #9
Due Apr. 10, 2015

(1) Solve the following systems of ODEs:

(a) \[
\begin{cases}
\frac{dx_1}{dt} = x_1 + 2x_2 \\
\frac{dx_2}{dt} = 4x_1 + 3x_2
\end{cases}
\]

(b) \[
\begin{cases}
\frac{dx_1}{dt} = x_1 + x_2 \\
\frac{dx_2}{dt} = -x_1 + 3x_2
\end{cases} \quad \text{with} \quad \begin{cases} x_1(0) = 1 \\
x_2(0) = 2 \end{cases}
\]

(2) Let \(T : P_3 \to P_3 \) be the linear endomorphism defined by
\[T(f(x)) = 2f(x) + 3f'(x) + f''(x), \]
where \(P_3 \) is the vector space of polynomials in \(x \) of degree at most 3. Find \(T^{2015}(x^3) \).

(3) Which of the following statements are true and which are false? Justify your answer.

(a) Two square matrices \(A \) and \(B \) are similar if and only if \(\dim \operatorname{Nul}(A - \lambda I) = \dim \operatorname{Nul}(B - \lambda I) \) for all \(\lambda \).
(b) For every square matrix \(A \), \(A \) and \(A^T \) are always similar.
(c) There does not exist a linear endomorphism \(T : V \to V \) such that
\[\{\operatorname{rank}(T^k) : k = 0, 1, 2, \ldots\} = \{8, 4, 3, 1, 1, \ldots\}. \]
(d) For an invertible linear endomorphism \(T : V \to V \) on a finite-dimensional vector space \(V \) over \(\mathbb{C} \), \(T \) is diagonalizable if and only if \(T^2 \) is diagonalizable.

(4) Show that two square matrices \(A \) and \(B \) are similar if and only if
\[\operatorname{rank}(f(A)) = \operatorname{rank}(f(B)) \]
for all polynomials \(f(x) \in \mathbb{C}[x] \).

(5) Let \(A \) be an \(n \times n \) matrix satisfying \(A^m = 0 \) for some positive integer \(m \). Show that
\[\operatorname{rank}(A) \leq \frac{(m-1)n}{m}. \]
(6) Let $T : V \to V$ be a linear endomorphism on a vector space V and let v_1 and v_2 be two linearly independent generalized eigenvectors in $K(T - \lambda I)^m$. Suppose that

$$K(T - \lambda I)^{m-1} \cap \text{Span}\{v_1, v_2\} = \{0\}.$$

Show that

$$\text{Span}\{v_1, T(v_1), ..., T^{m-1}(v_1)\}$$

$$\cap \text{Span}\{v_2, T(v_2), ..., T^{m-1}(v_2)\} = \{0\}.$$

(7) Let $\{a_n : n = 0, 1, 2, \ldots\}$ be the Fibonacci sequence given by

$$a_{n+2} = a_{n+1} + a_n \text{ for all } n \geq 0 \text{ and } a_0 = a_1 = 1.$$

(a) Show that

$$\begin{bmatrix} a_{n+2} \\ a_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{n+1} \\ a_n \end{bmatrix}$$

for all $n \geq 0$.

(b) Find a formula for a_n (express it as a function of n).