A list of topics covered by the final:

- Upper triangularization.
- Jordan Blocks, Jordan Matrices and Jordan Canonical Forms.
- Jordan Canonical Forms of 2×2 matrices.
- Generalized Eigenvectors and Eigenspaces.
- Stabilization of Generalized Eigenspaces.
- Dimensions of Generalized Eigenspaces and Jordan Canonical Forms.
- Minimal Polynomials.
- Generalized Spectral Theorem.
- Invariant subspaces.
- Cayley-Hamilton Theorem.
- Computation of A^n.
- System of 1st order homogeneous linear ODEs with constant coefficients.
- Existence of Jordan Canonical Forms.

Important Algorithms:

- Upper triangularize a square matrix.
- Given the eigenvalues/characteristic polynomial/minimal polynomial of a square matrix A, find those of $f(A)$ for a rational function $f(x)$.
- Find the Jordan Canonical Form of a 2×2 matrix.
- Given $\dim \text{Nul}(A - \lambda I)^m$, find the Jordan Canonical Form, characteristic polynomial and minimal polynomial of A and $f(A)$ for a rational function $f(A)$.
- Given the characteristic and minimal polynomials A, find all the possible Jordan Canonical Forms of A.
- Compute A^n.
- Compute e^A and solve the system $x' = Ax$ of ODEs.

Important Theorems:

- Every complex square matrix can be upper-triangularized.
- The sequences $\{\text{Nul}(A - \lambda I)^m\}$ and $\{\text{Col}(A - \lambda I)^m\}$ stabilize.
- The minimal polynomial of a square matrix A exists and is unique up to a scalar.
• Generalized Spectral Theorem: Given polynomials $f_1(x), f_2(x), \ldots, f_k(x)$ coprime to each other,

$$\text{Nul}(f_1(A)f_2(A) \ldots f_k(A)) = \text{Nul}(f_1(A)) \oplus \text{Nul}(f_2(A)) \oplus \ldots \oplus \text{Nul}(f_k(A)).$$

• If W is a T-invariant subspace of a linear endomorphism $T : V \to V$ on a finite-dimensional vector space V, the characteristic and minimal polynomials of $T|_W$ divide those of T.

• For a linear endomorphism $T : V \to V$ on a finite-dimensional vector space V, if $V = W_1 \oplus W_2 \oplus \ldots \oplus W_k$ for T-invariant subspaces W_i, then the minimal polynomial of T is the least common multiple of the minimal polynomials of $T_i = T|_{W_i}$ and the characteristic polynomial of T is the product of the characteristic polynomials of T_i.

• Cayley-Hamilton Theorem: For every square matrix A,

$$f(A) = 0$$

for $f(x) = \det(xI - A)$.

• For every square matrix A, the dimensions of generalized eigenspaces $\text{Nul}(A - \lambda I)^m$ determine the characteristic and minimal polynomials of A: if

$$\dim \text{Nul}(A - \lambda_i I)^{m_i - 1} < \dim \text{Nul}(A - \lambda_i I)^{m_i} = n_i = \dim \text{Nul}(A - \lambda_i I)^{m_i + 1}$$

for eigenvalues λ_i of A, then the characteristic and minimal polynomials of A are

$$\prod_i (x - \lambda_i)^{n_i} \text{ and } \prod_i (x - \lambda_i)^{m_i},$$

respectively.

• For every square matrix A over \mathbb{C}, there exists a Jordan matrix J such that A and J are similar. The number of blocks $J_{\lambda,m}$ in J is given by

$$2 \dim \text{Nul}(A - \lambda I)^m - \dim \text{Nul}(A - \lambda I)^{m-1} - \dim \text{Nul}(A - \lambda I)^{m+1}.$$

• Two matrices A and B are similar if and only if

$$\dim \text{Nul}(A - \lambda I)^m = \dim \text{Nul}(B - \lambda I)^m$$

for all $\lambda \in \mathbb{C}$ and $m \in \mathbb{N}$.

• For every square matrix A and $\lambda \in \mathbb{C}$, $\{a_k = \dim \text{Nul}(A - \lambda I)^k\}$ is a non-decreasing and concave upward sequence.
Sample Problems:

(1) Which of the following statements are true and which are false? Justify your answer.

(a) If \(f(A) = 0 \) for a square matrix \(A \) and a polynomial \(f(x) \), then \(f(x) \) must be divisible by the characteristic polynomial of \(A \).

(b) Two square matrices with the same minimal and characteristic polynomials must be similar.

(c) For all linear endomorphisms \(T : V \to V \) and all \(T \)-invariant subspaces \(W \) of \(V \), \(T^2(W) + T(W) \) is also \(T \)-invariant.

(d) For every linear endomorphism \(T : V \to V \), a subspace \(W \) of \(V \) is \(T \)-invariant if and only if it is \(T^2 \)-invariant.

(e) The characteristic polynomial of an \(n \times n \) matrix \(A \) is a minimal polynomial of \(A \) if and only if \(A \) has \(n \) distinct eigenvalues.

(f) There does not exist a linear endomorphism \(T : V \to V \) such that
\[
\{ \text{rank}(T^k) : k = 0, 1, 2, \ldots \} = \{8, 4, 3, 1, 1, \ldots \}.
\]

(2) Let \(A \) be a square matrix with minimal and characteristic polynomials \(x^3(x^2 - 1)^3 \) and \(x^4(x^2 - 1)^4(x + 1)^2 \), respectively.

(a) Show that \(A \) is NOT diagonalizable.

(b) Find the characteristic and minimal polynomials of the matrix \((2I + A)^{-1}\). Justify your answer.

(c) Find all possible dissimilar Jordan canonical forms of \(A \).

(3) Let \(A \) be a square matrix satisfying
\[
\{ \dim \text{Nul}(A - I)^k : k = 0, 1, \ldots \} = \{0, 2, 2, \ldots \}
\]
\[
\{ \dim \text{Nul}(A + I)^k : k = 0, 1, \ldots \} = \{0, 4, 6, 7, 7, \ldots \}
\]
\[
\dim \text{Nul}(A - \lambda I)^k = 0 \text{ for all } \lambda \neq \pm 1 \text{ and all } k.
\]

(a) Find the minimal and characteristic polynomials of \(A \). Justify your answer.

(b) Find the Jordan canonical form of \(A \).

(c) Find the minimal and characteristic polynomials of \(A^3 - A \). Justify your answer.
(4) Solve the following systems of ODEs:

(a) \[
\begin{align*}
\frac{dx_1}{dt} &= x_1 + 2x_2 \\
\frac{dx_2}{dt} &= 4x_1 + 3x_2
\end{align*}
\]

(b) \[
\begin{align*}
\frac{dx_1}{dt} &= x_1 + x_2 \\
\frac{dx_2}{dt} &= -x_1 + 3x_2
\end{align*}
\]

with \[
\begin{align*}
x_1(0) &= 1 \\
x_2(0) &= 2
\end{align*}
\]

(5) Let \(T : V \rightarrow V \) be a linear endomorphism on a vector space \(V \).
Show that all subspaces \(W \) of \(V \) are \(T \)-invariant if and only if \(T = cI \) for some constant \(c \), where \(I \) is the identity map.

(6) Show that
\[
K(T^2 + T) + K(T^3 + T) = K(T^4 + T^3 + T^2 + T)
\]

for every linear endomorphism \(T : V \rightarrow V \) on a finite-dimensional vector space \(V \).

(7) Let \(T : M_{3\times3} (\mathbb{R}) \rightarrow M_{3\times3} (\mathbb{R}) \) be the linear endomorphism given by
\[
T(A) = 2A - 3A^T.
\]

(a) Show that \(T \) is diagonalizable.
(b) Find \(T^{2015} (A) \) for
\[
A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}.
\]

(8) Let \(A \) be an \(n \times n \) matrix satisfying \(\text{rank}(A^m) = n - m \) for \(m = 1, 2, \ldots, n \).

(a) Show that 0 is the only eigenvalue of \(A \).
(b) Find the characteristic and minimal polynomials \(A \). Justify your answer.
(c) Find the Jordan canonical form of \(A \). Justify your answer.

(9) Show that \(A \) and \(A^T \) are similar for every square matrix \(A \).